
對于矩陣A,如果存在一個矩陣B,使得AB=BA=E,其中E為與A,B同維數(shù)的單位陣,就稱A為可逆矩陣(或者稱A可逆),并稱B是A的逆矩陣,簡稱逆陣。(此時的逆稱為凱利逆) 矩陣A可逆的充分必要條件是|A|≠0?! 文婢仃囀悄婢仃嚨膹V義形式。由于奇異矩陣或非方陣的矩陣不存在逆矩陣,但可以用函數(shù)pinv(A)求其偽逆矩陣?;菊Z法為X=pinv(A),X=pinv(A,tol),其中tol為誤差,pinv為pseudo-inverse的縮寫:max(size(A))*norm(A)*eps。函數(shù)返回一個與A的轉(zhuǎn)置矩陣A'同型的矩陣X,并且滿足:AXA=A,XAX=X.此時,稱矩陣X為矩陣A的偽逆,也稱為廣義逆矩陣。pinv(A)具有inv(A)的部分特性,但不與inv(A)完全等同。 如果A為非奇異方陣,pinv(A)=inv(A),但卻會耗費大量的計算時間,相比較而言,inv(A)花費更少的時間?! τ诰仃嘇,如果存在一個矩陣B,使得AB=BA=E,其中E為與A,B同維數(shù)的單位陣,就稱A為可逆矩陣(或者稱A可逆),并稱B是A的逆矩陣,簡稱逆陣。(此時的逆稱為凱利逆) 矩陣A可逆的充分必要條件是|A|≠0?! 文婢仃囀悄婢仃嚨膹V義形式。由于奇異矩陣或非方陣的矩陣不存在逆矩陣,但可以用函數(shù)pinv(A)求其偽逆矩陣?;菊Z法為X=pinv(A),X=pinv(A,tol),其中tol為誤差,pinv為pseudo-inverse的縮寫:max(size(A))*norm(A)*eps。函數(shù)返回一個與A的轉(zhuǎn)置矩陣A'同型的矩陣X,并且滿足:AXA=A,XAX=X.此時,稱矩陣X為矩陣A的偽逆,也稱為廣義逆矩陣。pinv(A)具有inv(A)的部分特性,但不與inv(A)完全等同。 如果A為非奇異方陣,pinv(A)=inv(A),但卻會耗費大量的計算時間,相比較而言,inv(A)花費更少的時間。
愛華網(wǎng)


