
卡爾曼濾波(Kalman filtering)一種利用線性系統(tǒng)狀態(tài)方程,通過系統(tǒng)輸入輸出觀測數(shù)據(jù),對系統(tǒng)狀態(tài)進行最優(yōu)估計的算法。由于觀測數(shù)據(jù)中包括系統(tǒng)中的噪聲和干擾的影響,所以最優(yōu)估計也可看作是濾波過程。斯坦利?施密特(Stanley Schmidt)首次實現(xiàn)了卡爾曼濾波器??柭贜ASA埃姆斯研究中心訪問時,發(fā)現(xiàn)他的方法對于解決阿波羅計劃的軌道預(yù)測很有用,后來阿波羅飛船的導(dǎo)航電腦使用了這種濾波器。 關(guān)于這種濾波器的論文由Swerling (1958), Kalman (1960)與 Kalman and Bucy (1961)發(fā)表。數(shù)據(jù)濾波是去除噪聲還原真實數(shù)據(jù)的一種數(shù)據(jù)處理技術(shù), Kalman濾波在測量方差已知的情況下能夠從一系列存在測量噪聲的數(shù)據(jù)中,估計動態(tài)系統(tǒng)的狀態(tài). 由于, 它便于計算機編程實現(xiàn), 并能夠?qū)ΜF(xiàn)場采集的數(shù)據(jù)進行實時的更新和處理, Kalman濾波是目前應(yīng)用最為廣泛的濾波方法, 在通信, 導(dǎo)航, 制導(dǎo)與控制等多領(lǐng)域得到了較好的應(yīng)用.
卡爾曼_卡爾曼濾波 -定義
傳統(tǒng)的濾波方法,只能是在有用信號與噪聲具有不同頻帶的條件下才能實現(xiàn).20世紀40年代,N.維納和A.H.柯爾莫哥羅夫把信號和噪聲的統(tǒng)計性質(zhì)引進了濾波理論,在假設(shè)信號和噪聲都是平穩(wěn)過程的條件下,利用最優(yōu)化方法對信號真值進行估計,達到濾波目的,從而在概念上與傳統(tǒng)的濾波方法聯(lián)系起來,被稱為維納濾波。這種方法要求信號和噪聲都必須是以平穩(wěn)過程為條件。60年代初,卡爾曼(R.E.Kalman)和布塞(R. S.Bucy)發(fā)表了一篇重要的論文《線性濾波和預(yù)測 理論的新成果》,提出了一種新的線性濾波和預(yù)測理由論,被稱之為卡爾曼濾波。特點是在線性狀態(tài)空間表示的基礎(chǔ)上對有噪聲的輸入和觀測信號進行處理,求取系統(tǒng)狀態(tài)或真實信號。
這種理論是在時間域上來表述的,基本的概念是:在線性系統(tǒng)的狀態(tài)空間表示基礎(chǔ)上,從輸出和輸入觀測數(shù)據(jù)求系統(tǒng)狀態(tài)的最優(yōu)估計。這里所說的系統(tǒng)狀態(tài),是總結(jié)系統(tǒng)所有過去的輸入和擾動對系統(tǒng)的作用的最小參數(shù)的集合,知道了系統(tǒng)的狀態(tài)就能夠與未來的輸入與系統(tǒng)的擾動一起確定系統(tǒng)的整個行為。
卡爾曼濾波不要求信號和噪聲都是平穩(wěn)過程的假設(shè)條件。對于每個時刻的系統(tǒng)擾動和觀測誤差(即噪聲),只要對它們的統(tǒng)計性質(zhì)作某些適當(dāng)?shù)募俣?,通過對含有噪聲的觀測信號進行處理,就能在平均的意義上,求得誤差為最小的真實信號的估計值。因此,自從卡爾曼濾波理論問世以來,在通信系統(tǒng)、電力系統(tǒng)、航空航天、環(huán)境污染控制、工業(yè)控制、雷達信號處理等許多部門都得到了應(yīng)用,取得了許多成功應(yīng)用的成果。例如在圖像處理方面,應(yīng)用卡爾曼濾波對由于某些噪聲影響而造成模糊的圖像進行復(fù)原。在對噪聲作了某些統(tǒng)計性質(zhì)的假定后,就可以用卡爾曼的算法以遞推的方式從模糊圖像中得到均方差最小的真實圖像,使模糊的圖像得到復(fù)原。
卡爾曼_卡爾曼濾波 -性質(zhì)
①卡爾曼濾波是一個算法,它適用于線性、離散和有限維系統(tǒng)。每一個有外部變量的自回歸移動平均系統(tǒng)(ARMAX)或可用有理傳遞函數(shù)表示的系統(tǒng)都可以轉(zhuǎn)換成用狀態(tài)空間表示的系統(tǒng),從而能用卡爾曼濾波進行計算。
②任何一組觀測數(shù)據(jù)都無助于消除x(t)的確定性。增益K(t)也同樣地與觀測數(shù)據(jù)無關(guān)。
③當(dāng)觀測數(shù)據(jù)和狀態(tài)聯(lián)合服從高斯分布時用卡爾曼遞歸公式計算得到的是高斯隨機變量的條件均值和條件方差,從而卡爾曼濾波公式給出了計算狀態(tài)的條件概率密度的更新過程線性最小方差估計,也就是最小方差估計。
卡爾曼_卡爾曼濾波 -實現(xiàn)形式
目前,卡爾曼濾波已經(jīng)有很多不同的實現(xiàn).卡爾曼最初提出的形式現(xiàn)在一般稱為簡單卡爾曼濾波器.除此以外,還有施密特擴展濾波器,信息濾波器以及很多Bierman, Thornton 開發(fā)的平方根濾波器的變種.最常見的卡爾曼濾波器是鎖相環(huán),它在收音機,計算機和幾乎任何視頻或通訊設(shè)備中廣泛存在.
卡爾曼_卡爾曼濾波 -典型實例
卡爾曼濾波
卡爾曼濾波的一個典型實例是從一組有限的,對物體位置的,包含噪聲的觀察序列預(yù)測出物體的坐標位置及速度. 在很多工程應(yīng)用(雷達, 計算機視覺)中都可以找到它的身影. 同時,卡爾曼濾波也是控制理論以及控制系統(tǒng)工程中的一個重要話題.
卡爾曼_卡爾曼濾波 -應(yīng)用
比如,在雷達中,人們感興趣的是跟蹤目標,但目標的位置、速度、加速度的測量值往往在任何時候都有噪聲。卡爾曼濾波利用目標的動態(tài)信息,設(shè)法去掉噪聲的影響,得到一個關(guān)于目標位置的好的估計。這個估計可以是對當(dāng)前目標位置的估計(濾波),也可以是對于將來位置的估計(預(yù)測),也可以是對過去位置的估計(插值或平滑)。
擴展卡爾曼濾波(EXTEND KALMAN FILTER, EKF)
擴展卡爾曼濾波器
是由kalman filter考慮時間非線性的動態(tài)系統(tǒng),常應(yīng)用于目標跟蹤系統(tǒng)。
卡爾曼_卡爾曼濾波 -狀態(tài)估計
狀態(tài)估計
狀態(tài)估計是卡爾曼濾波的重要組成部分。一般來說,根據(jù)觀測數(shù)據(jù)對隨機量進行定量推斷就是估計問題,特別是對動態(tài)行為的狀態(tài)估計,它能實現(xiàn)實時運行狀態(tài)的估計和預(yù)測功能。比如對飛行器狀態(tài)估計。狀態(tài)估計對于了解和控制一個系統(tǒng)具有重要意義,所應(yīng)用的方法屬于統(tǒng)計學(xué)中的估計理論。最常用的是最小二乘估計,線性最小方差估計、最小方差估計、遞推最小二乘估計等。其他如風(fēng)險準則的貝葉斯估計、最大似然估計、隨機逼近等方法也都有應(yīng)用。
狀態(tài)量
受噪聲干擾的狀態(tài)量是個隨機量,不可能測得精確值,但可對它進行一系列觀測,并依據(jù)一組觀測值,按某種統(tǒng)計觀點對它進行估計。使估計值盡可能準確地接近真實值,這就是最優(yōu)估計。真實值與估計值之差稱為估計誤差。若估計值的數(shù)學(xué)期望與真實值相等,這種估計稱為無偏估計??柭岢龅倪f推最優(yōu)估計理論,采用狀態(tài)空間描述法,在算法采用遞推形式,卡爾曼濾波能處理多維和非平穩(wěn)的隨機過程。
理論
卡爾曼濾波理論的提出,克服了威納濾波理論的局限性使其在工程上得到了廣泛的應(yīng)用,尤其在控制、制導(dǎo)、導(dǎo)航、通訊等現(xiàn)代工程方面。
卡爾曼_卡爾曼濾波 -MATLAB程序
MATLAB
N=200;
w(1)=0;
w=randn(1,N)
x(1)=0;
a=1;
for k=2:N;
x(k)=a*x(k-1)+w(k-1);
end
V=randn(1,N);
q1=std(V);
Rvv=q1.^2;
q2=std(x);
Rxx=q2.^2;
q3=std(w);
Rww=q3.^2;
c=0.2;
Y=c*x+V;
p(1)=0;
s(1)=0;
for t=2:N;
p1(t)=a.^2*p(t-1)+Rww;
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
p(t)=p1(t)-c*b(t)*p1(t);
end
t=1:N;
plot(t,s,'r',t,Y,'g',t,x,'b');
function [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin)
% Kalman filter.
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...)
%
% INPUTS:
% y(:,t) - the observation at time t
% A - the system matrix
% C - the observation matrix
% Q - the system covariance
% R - the observation covariance
% init_x - the initial state (column) vector
% init_V - the initial state covariance
%
% OPTIONAL INPUTS (string/value pairs [default in brackets])
% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
% In this case, all the above matrices take an additional final dimension,
% i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m).
% However, init_x and init_V are independent of model(1).
% 'u' - u(:,t) the control signal at time t [ [] ]
% 'B' - B(:,:,m) the input regression matrix for model m
%
% OUTPUTS (where X is the hidden state being estimated)
% x(:,t) = E[X(:,t) | y(:,1:t)]
% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]
% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t>= 2
% loglik = sum{t=1}^T log P(y(:,t))
%
% If an input signal is specified, we also condition on it:
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]
% If a model sequence is specified, we also condition on it:
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]
[os T] = size(y);
ss = size(A,1); % size of state space
% set default params
model = ones(1,T);
u = [];
B = [];
ndx = [];
args = varargin;
nargs = length(args);
for i=1:2:nargs
switch args
case 'model', model = args{i+1};
case 'u', u = args{i+1};
case 'B', B = args{i+1};
case 'ndx', ndx = args{i+1};
otherwise, error(['unrecognized argument ' args])
end
end
x = zeros(ss, T);
V = zeros(ss, ss, T);
VV = zeros(ss, ss, T);
loglik = 0;
for t=1:T
m = model(t);
if t==1
%prevx = init_x(:,m);
%prevV = init_V(:,:,m);
prevx = init_x;
prevV = init_V;
initial = 1;
else
prevx = x(:,t-1);
prevV = V(:,:,t-1);
initial = 0;
end
if isempty(u)
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial);
else
if isempty(ndx)
[x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ...
'initial', initial, 'u', u(:,t), 'B', B(:,:,m));
else
i = ndx;
% copy over all elements; only some will get updated
x(:,t) = prevx;
prevP = inv(prevV);
prevPsmall = prevP(i,i);
prevVsmall = inv(prevPsmall);
[x(i,t), smallV, LL, VV(i,i,t)] = ...
kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ...
'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
smallP = inv(smallV);
prevP(i,i) = smallP;
V(:,:,t) = inv(prevP);
end
end
loglik = loglik + LL;
end
Z=(1:100); %觀測值
noise=randn(1,100); %方差為1的高斯噪聲
Z=Z+noise;
X=[0;0]; %狀態(tài)
P=[10;01]; %狀態(tài)協(xié)方差矩陣
F=[11;01]; %狀態(tài)轉(zhuǎn)移矩陣
Q=[0.0001,0;00.0001]; %狀態(tài)轉(zhuǎn)移協(xié)方差矩陣
H=; %觀測矩陣
R=1; %觀測噪聲方差
figure;
hold on;
fori=1:100
X_ = F*X;
P_ = F*P*F'+Q;
K = P_*H'/(H*P_*H'+R);
X = X_+K*(Z(i)-H*X_);
P = (eye(2)-K*H)*P_;
plot(X(1), X(2)); %畫點,橫軸表示位置,縱軸表示速度
end
卡爾曼_卡爾曼濾波 -通俗解釋
簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優(yōu)化自回歸數(shù)據(jù)處理算法)”。對于解決很大部分的問題,他是最優(yōu),效率最高甚至是最有用的。他的廣泛應(yīng)用已經(jīng)超過30年,包括機器人導(dǎo)航,控制,傳感器數(shù)據(jù)融合甚至在軍事方面的雷達系統(tǒng)以及導(dǎo)彈追蹤等等。近來更被應(yīng)用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
卡爾曼濾波器的介紹 :
為了可以更加容易的理解卡爾曼濾波器,這里會應(yīng)用形象的描述方法來講解,而不是像大多數(shù)參考書那樣羅列一大堆的數(shù)學(xué)公式和數(shù)學(xué)符號。但是,他的5條公式是其核心內(nèi)容。結(jié)合現(xiàn)代的計算機,其實卡爾曼的程序相當(dāng)?shù)暮唵?,只要你理解了他的?條公式。
在介紹他的5條公式之前,先讓我們來根據(jù)下面的例子一步一步的探索。
假設(shè)我們要研究的對象是一個房間的溫度。根據(jù)你的經(jīng)驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現(xiàn)在這一分鐘的溫度(假設(shè)我們用一分鐘來做時間單位)。假設(shè)你對你的經(jīng)驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時間是沒有關(guān)系的而且符合高斯分布(Gaussian Distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。
好了,現(xiàn)在對于某一分鐘我們有兩個有關(guān)于該房間的溫度值:你根據(jù)經(jīng)驗的預(yù)測值(系統(tǒng)的預(yù)測值)和溫度計的值(測量值)。下面我們要用這兩個值結(jié)合他們各自的噪聲來估算出房間的實際溫度值。
假如我們要估算k時刻的實際溫度值。首先你要根據(jù)k-1時刻的溫度值,來預(yù)測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預(yù)測值是跟k-1時刻一樣的,假設(shè)是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優(yōu)溫度值的偏差是3,你對自己預(yù)測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里得到了k時刻的溫度值,假設(shè)是25度,同時該值的偏差是4度。
由于我們用于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的協(xié)方差(covariance)來判斷。因為Kg=5^2/(5^2+4^2),所以Kg=0.61,我們可以估算出k時刻的實際溫度值是:23+0.61*(25-23)=24.22度??梢钥闯?,因為溫度計的協(xié)方差(covariance)比較?。ū容^相信溫度計),所以估算出的最優(yōu)溫度值偏向溫度計的值。
現(xiàn)在我們已經(jīng)得到k時刻的最優(yōu)溫度值了,下一步就是要進入k+1時刻,進行新的最優(yōu)估算。到現(xiàn)在為止,好像還沒看到什么自回歸的東西出現(xiàn)。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優(yōu)值(24.22度)的偏差。算法如下:((1-Kg)*5^2)^0.5=3.12。這里的5就是上面的k時刻你預(yù)測的那個23度溫度值的偏差,得出的3.12就是進入k+1時刻以后k時刻估算出的最優(yōu)溫度值的偏差(對應(yīng)于上面的3)。
就是這樣,卡爾曼濾波器就不斷的把(協(xié)方差(covariance)遞歸,從而估算出最優(yōu)的溫度值。他運行的很快,而且它只保留了上一時刻的協(xié)方差(covariance)。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
下面就要言歸正傳,討論真正工程系統(tǒng)上的卡爾曼。
卡爾曼濾波器算法 :
在這一部分,我們就來描述源于Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨機變量(Random Variable),高斯或正態(tài)分配(Gaussian Distribution)還有State-space Model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。
首先,我們先要引入一個離散控制過程的系統(tǒng)。該系統(tǒng)可用一個線性隨機微分方程(Linear Stochastic Difference equation)來描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系統(tǒng)的測量值:
Z(k)=H X(k)+V(k)
上兩式子中,X(k)是k時刻的系統(tǒng)狀態(tài),U(k)是k時刻對系統(tǒng)的控制量。A和B是系統(tǒng)參數(shù),對于多模型系統(tǒng),他們?yōu)榫仃?。Z(k)是k時刻的測量值,H是測量系統(tǒng)的參數(shù),對于多測量系統(tǒng),H為矩陣。W(k)和V(k)分別表示過程和測量的噪聲。他們被假設(shè)成高斯白噪聲(White Gaussian Noise),他們的協(xié)方差(covariance)分別是Q,R(這里我們假設(shè)他們不隨系統(tǒng)狀態(tài)變化而變化)。
對于滿足上面的條件(線性隨機微分系統(tǒng),過程和測量都是高斯白噪聲),卡爾曼濾波器是最優(yōu)的信息處理器。下面我們結(jié)合他們的協(xié)方差來估算系統(tǒng)的最優(yōu)化輸出(類似上一節(jié)那個溫度的例子)。
首先我們要利用系統(tǒng)的過程模型,來預(yù)測下一狀態(tài)的系統(tǒng)。假設(shè)現(xiàn)在的系統(tǒng)狀態(tài)是k,根據(jù)系統(tǒng)的模型,可以基于系統(tǒng)的上一狀態(tài)而預(yù)測出現(xiàn)在狀態(tài):
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一狀態(tài)預(yù)測的結(jié)果,X(k-1|k-1)是上一狀態(tài)最優(yōu)的結(jié)果,U(k)為現(xiàn)在狀態(tài)的控制量,如果沒有控制量,它可以為0。
到現(xiàn)在為止,我們的系統(tǒng)結(jié)果已經(jīng)更新了,可是,對應(yīng)于X(k|k-1)的協(xié)方差還沒更新。我們用P表示協(xié)方差(covariance):
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)對應(yīng)的協(xié)方差,P(k-1|k-1)是X(k-1|k-1)對應(yīng)的協(xié)方差,A’表示A的轉(zhuǎn)置矩陣,Q是系統(tǒng)過程的協(xié)方差。式子1,2就是卡爾曼濾波器5個公式當(dāng)中的前兩個,也就是對系統(tǒng)的預(yù)測。
現(xiàn)在我們有了現(xiàn)在狀態(tài)的預(yù)測結(jié)果,然后我們再收集現(xiàn)在狀態(tài)的測量值。結(jié)合預(yù)測值和測量值,我們可以得到現(xiàn)在狀態(tài)(k)的最優(yōu)化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg為卡爾曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)
到現(xiàn)在為止,我們已經(jīng)得到了k狀態(tài)下最優(yōu)的估算值X(k|k)。但是為了要令卡爾曼濾波器不斷的運行下去直到系統(tǒng)過程結(jié)束,我們還要更新k狀態(tài)下X(k|k)的協(xié)方差:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 為1的矩陣,對于單模型單測量,I=1。當(dāng)系統(tǒng)進入k+1狀態(tài)時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,算法就可以自回歸的運算下去。
卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據(jù)這5個公式,可以很容易用計算機編程實現(xiàn)。
在上面的例子中,過程誤差和測量誤差設(shè)定為4是為了討論的方便。實際中,溫度的變化速度以及溫度計的測量誤差都沒有這么大。
假設(shè)如下一個系統(tǒng):
房間內(nèi)連續(xù)兩個時刻溫度差值的標準差為0.02度
溫度計的測量值誤差的標準差為0.5度
房間溫度的真實值為24度
對溫度的初始估計值為23.5度,誤差的方差為1
MatLab仿真的代碼如下:
% Kalman filter example of temperature measurement in Matlab
% This M code is modified from Xuchen Yao's matlab on 2013/4/18
%房間當(dāng)前溫度真實值為24度,認為下一時刻與當(dāng)前時刻溫度相同,誤差為0.02度(即認為連續(xù)的兩個時刻最多變化0.02度)。
%溫度計的測量誤差為0.5度。
%開始時,房間溫度的估計為23.5度,誤差為1度。
% Kalman filter example demo in Matlab
% This M code is modified from Andrew D. Straw's Python
% implementation of Kalman filter algorithm.
% The original code is from the link in references
% Below is the Python version's comments:
% Kalman filter example demo in Python
% A Python implementation of the example given in pages 11-15 of "An
% Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,
% University of North Carolina at Chapel Hill, Department of Computer
% Science, TR 95-041,
% by Andrew D. Straw
% by Xuchen Yao
% by Lin Wu
clear all;
close all;
% intial parameters
n_iter = 100; %計算連續(xù)n_iter個時刻
sz = [n_iter, 1]; % size of array. n_iter行,1列
x = 24; % 溫度的真實值
Q = 4e-4; % 過程方差, 反應(yīng)連續(xù)兩個時刻溫度方差。更改查看效果
R = 0.25; % 測量方差,反應(yīng)溫度計的測量精度。更改查看效果
z = x + sqrt(R)*randn(sz); % z是溫度計的測量結(jié)果,在真實值的基礎(chǔ)上加上了方差為0.25的高斯噪聲。
% 對數(shù)組進行初始化
xhat=zeros(sz); % 對溫度的后驗估計。即在k時刻,結(jié)合溫度計當(dāng)前測量值與k-1時刻先驗估計,得到的最終估計值
P=zeros(sz); % 后驗估計的方差
xhatminus=zeros(sz); % 溫度的先驗估計。即在k-1時刻,對k時刻溫度做出的估計
Pminus=zeros(sz); % 先驗估計的方差
K=zeros(sz); % 卡爾曼增益,反應(yīng)了溫度計測量結(jié)果與過程模型(即當(dāng)前時刻與下一時刻溫度相同這一模型)的可信程度
% intial guesses
xhat(1) = 23.5; %溫度初始估計值為23.5度
P(1) =1; %誤差方差為1
for k = 2:n_iter
% 時間更新(預(yù)測)
xhatminus(k) = xhat(k-1); %用上一時刻的最優(yōu)估計值來作為對當(dāng)前時刻的溫度的預(yù)測
Pminus(k) = P(k-1)+Q; %預(yù)測的方差為上一時刻溫度最優(yōu)估計值的方差與過程方差之和
% 測量更新(校正)
K(k) = Pminus(k)/( Pminus(k)+R ); %計算卡爾曼增益
xhat(k) = xhatminus(k)+K(k)*(z(k)-xhatminus(k)); %結(jié)合當(dāng)前時刻溫度計的測量值,對上一時刻的預(yù)測進行校正,得到校正后的最優(yōu)估計。該估計具有最小均方差
P(k) = (1-K(k))*Pminus(k); %計算最終估計值的方差
end
FontSize=14;
LineWidth=3;
figure();
估計的誤差的方差
plot(z,'k+'); %畫出溫度計的測量值
hold on;
plot(xhat,'b-','LineWidth',LineWidth) %畫出最優(yōu)估計值
hold on;
plot(x*ones(sz),'g-','LineWidth',LineWidth); %畫出真實值
legend('溫度計的測量結(jié)果', '后驗估計', '真實值');
xl=xlabel('時間(分鐘)');
yl=ylabel('溫度');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
hold off;
set(gca,'FontSize',FontSize);
figure();
valid_iter = [2:n_iter]; % Pminus not valid at step 1
plot(valid_iter,P([valid_iter]),'LineWidth',LineWidth); %畫出最優(yōu)估計值的方差
legend('后驗估計的誤差估計');
xl=xlabel('時間(分鐘)');
yl=ylabel('℃^2');
set(xl,'fontsize',FontSize);
set(yl,'fontsize',FontSize);
set(gca,'FontSize',FontSize);
愛華網(wǎng)本文地址 » http://www.klfzs.com/a/8103330103/61665.html
愛華網(wǎng)


