日韩av高清在线影院,欧美日韩国产综合色视频在线,日韩精品人妻在线视频,内射极品高挑少妇人妻,久久久国产成人免费,97久久视频在线观看,人妻中文字幕日韩有码人妻熟女,亚洲国产成人精品福利,99精品国产福利在线观看

奇異值分解SingularValueDecomposition singular value 矩陣

聲明:本文內(nèi)容來自英文內(nèi)容全部來自wikipedia,中文翻譯is inprogress......

二維實(shí)剃刀矩陣M奇異值分解示意圖。
[Visualization of the SVD of a two-dimensional, real shearing matrixM.].
奇異值分解[SingularValueDecomposition] singular value 矩陣

首先,我們看到藍(lán)色的單位圓盤及兩個規(guī)范的單位矢量。[First, we see the unitdisc in blue together with the two canonical unit vectors.]然后我們看到M的作用,它把一個圓扭曲為橢圓。[We then see the action of M, whichdistorts the disk to an ellipse.]SVD把M分解成三個簡單的變換:旋轉(zhuǎn)V*,沿著被旋轉(zhuǎn)坐標(biāo)軸的拉伸Σ以及第二個旋轉(zhuǎn)U。[The SVD decomposesM into three simple transformations: a rotationV*, a scaling Σ along the rotated coordinate axesand a second rotation U.] 橢圓半軸σ1和σ2的長度是M的奇異值。[The lengthsσ1 and σ2 of the semi-axes of the ellipse are the singular values of M.]

在線性代數(shù)中,奇異值分解(SVD)是實(shí)或復(fù)矩陣的分解,它在信號處理和統(tǒng)計學(xué)中有許多有用的應(yīng)用。[In linear algebra, the singular valuedecomposition (SVD) is a factorization of a real or complex matrix, with many useful applications insignal processing and statistics.]

形式上來說,m*n階的實(shí)或復(fù)矩陣M的奇異值分解是形式如下的分解:[Formally, the singular valuedecomposition of an m×n real or complex matrix M is afactorization of the form]

其中,U是一個m*m階的實(shí)或復(fù)單位陣,Σ是一個m*n階的矩形對角陣,在對角線上有非負(fù)的實(shí)數(shù)值。V*(V的共軛轉(zhuǎn)置)是一個n*n的實(shí)或復(fù)單位陣。Σ的對角項(xiàng)Σij稱之為M的奇異值。U的m個列以及對應(yīng)的V的n個列被分別稱為M的左奇異矢量和右奇異矢量。[whereU is anΣ的對角項(xiàng) m×m real or complex unitary matrix, Σ is an m×n rectangular diagonal matrix withnonnegative real numbers on the diagonal, and V* (theconjugate transpose of V) is ann×n real or complex unitary matrix. The diagonal entriesΣi,i of Σ are known as the singular values of M. The mcolumns of U and the n columns of V are calledthe left-singular vectors and right-singular vectorsof M, respectively.]

奇異值分解和特征值分解密切相關(guān),即:[The singular value decomposition and theeigendecomposition are closely related.Namely:]

采用SVD的應(yīng)用包括計算偽逆局陣、數(shù)據(jù)的最小平方擬合、矩陣逼近以及確定矩陣的秩、range以及nullspace等。[Applications which employ the SVD include computing thepseudoinverse, least squares fitting of data, matrixapproximation, and determining the rank, range and null space of a matrix.]

Contents

Statement of the theorem

Suppose M is an m×n matrix whose entries come from thefield K, which is either the fieldof real numbers or the field of complex numbers. Then there exists afactorization of the form

where U is an m×m unitary matrix over K, the matrix Σ isan m×n diagonal matrix with nonnegative real numberson the diagonal, and the n×n unitary matrix V*denotes the conjugate transpose of V. Such afactorization is called the singular value decomposition ofM.

The diagonal entries of Σ are known as the singular values of M. A commonconvention is to list the singular values in descending order. Inthis case, the diagonal matrix Σ is uniquely determined by M(though the matrices U and V are not).

Intuitive interpretations

Rotation, scaling, rotation

In the special but common case in which M is just an m×msquare matrix with positive determinant whose entries are plain realnumbers, then U, V*, and Σ are m×m matrices of realnumbers as well, Σ can be regarded as a scaling matrix, and U and V* can be viewed asrotation matrices.

If the abovementioned conditions are met, the expression can thus be intuitively interpreted as a composition (or sequence) of three geometrical transformations: a rotation, a scaling, and another rotation. Forinstance, the figure above explains how a shear matrix can be described as such asequence.

Singular values as semiaxis of an ellipse orellipsoid

As shown in the figure, the singular values can be interpreted as thesemiaxes of an ellipse in 2D. This concept can be generalizedto n-dimensional Euclidean space, with the singular values ofany n×n square matrix being viewed as thesemiaxes of an n-dimensional ellipsoid. See below for further details.

The columns of U and V are orthonormalbases

Since U and V* are unitary, the columns of each ofthem form a set of orthonormal vectors, which can beregarded as basis vectors. By the definition ofunitary matrix, the same is true for their conjugate transposesU* and V. In short, U, U*, V,and V* are orthonormal bases.

Example

Consider the 4×5 matrix

A singular value decomposition of this matrix is given by

Notice is zero outside of the diagonal and one diagonal element is zero.Furthermore, because the matrices and are unitary, multiplying by their respectiveconjugate transposes yields identity matrices, as shown below. In thiscase, because and are real valued, they each are an orthogonal matrix.

and

This particular singular value decomposition is not unique.Choosing such that

is also a valid singular value decomposition.

Singular values, singular vectors, and their relation tothe SVD

A non-negative real number σ is a singular value for M if and only ifthere exist unit-length vectors u inKm and v inKn such that

The vectors u and v are calledleft-singular and right-singular vectors for σ,respectively.

In any singular value decomposition

the diagonal entries of Σ are equal to the singular values ofM. The columns of U and V are, respectively,left- and right-singular vectors for the corresponding singularvalues. Consequently, the above theorem implies that:

A singular value for which we can find two left (or right)singular vectors that are linearly independent is calleddegenerate.

Non-degenerate singular values always have unique left- andright-singular vectors, up to multiplication by a unit-phase factoreiφ (for the real case up to sign).Consequently, if all singular values of M are non-degenerateand non-zero, then its singular value decomposition is unique, upto multiplication of a column of U by a unit-phase factorand simultaneous multiplication of the corresponding column ofV by the same unit-phase factor.

Degenerate singular values, by definition, have non-uniquesingular vectors. Furthermore, if u1 andu2 are two left-singular vectors which bothcorrespond to the singular value σ, then any normalized linearcombination of the two vectors is also a left-singular vectorcorresponding to the singular value σ. The similar statement istrue for right-singular vectors. Consequently, if M hasdegenerate singular values, then its singular value decompositionis not unique.

Applications of the SVD

Pseudoinverse

The singular value decomposition can be used for computing thepseudoinverse of a matrix.Indeed, the pseudoinverse of the matrix M with singularvalue decomposition is

where Σ+ is the pseudoinverse of Σ, which is formedby replacing every nonzero diagonal entry by its reciprocal and transposing theresulting matrix. The pseudoinverse is one way to solve linear least squares problems.

Solving homogeneous linear equations

A set of homogeneous linear equations canbe written as for a matrix and vector . A typical situation is that is known and a non-zero is to be determined which satisfies the equation. Such an belongs to 's null space and is sometimes called a (right)null vector of . can be characterized as a right-singular vector corresponding to asingular value of that is zero. This observation means that if is a square matrix and has no vanishing singularvalue, the equation has no non-zero as a solution. It also means that if there are several vanishingsingular values, any linear combination of the correspondingright-singular vectors is a valid solution. Analogously to thedefinition of a (right) null vector, a non-zero satisfying , with denoting the conjugate transpose of , is called a left null vector of .

Total least squares minimization

A total least squares problem refersto determining the vector which minimizes the 2-norm of a vector under the constraint . The solution turns out to be the right-singular vector of corresponding to the smallest singular value.

Range, null space and rank

Another application of the SVD is that it provides an explicitrepresentation of the range and nullspace of a matrix M. The right-singular vectorscorresponding to vanishing singular values of M span thenull space of M. E.g., the null space is spanned by the lasttwo columns of in the above example. The left-singular vectors corresponding tothe non-zero singular values of M span the range ofM. As a consequence, the rank of M equals the number ofnon-zero singular values which is the same as the number ofnon-zero diagonal elements in .

In numerical linear algebra the singular values can be used todetermine the effective rank of a matrix, as rounding error may lead to small but non-zerosingular values in a rank deficient matrix.

Low-rank matrix approximation

Some practical applications need to solve the problem ofapproximating a matrix with another matrix , said truncated, which has a specific rank . In the case that the approximation is based on minimizing theFrobenius norm of the difference between and under the constraint that it turns out that the solution is given by the SVD of , namely

where is the same matrix as except that it contains only the largest singular values (the other singular values are replaced byzero). This is known as the Eckart–Young theorem, as it wasproved by those two authors in 1936 (although it was later found tohave been known to earlier authors; see Stewart 1993).

Also see CUR matrix approximation for anotherlow-rank approximation that is easier to interpret.

Separable models

The SVD can be thought of as decomposing a matrix into aweighted, ordered sum of separable matrices. By separable, we meanthat a matrix can be written as an outer product of two vectors , or, in coordinates, . Specifically, the matrix M can be decomposed as:

Here and are the ith columns of the corresponding SVDmatrices, are the ordered singular values, and each is separable. The SVD can be used to find the decomposition of animage processing filter into separable horizontal and verticalfilters. Note that the number of non-zero is exactly the rank of the matrix.

Separable models often arise in biological systems, and the SVDdecomposition is useful to analyze such systems. For example, somevisual area V1 simple cells' receptive fields can be welldescribed[1]by a Gabor filter in the space domain multiplied by amodulation function in the time domain. Thus, given a linear filterevaluated through, for example, reverse correlation, one canrearrange the two spatial dimensions into one dimension, thusyielding a two dimensional filter (space, time) which can bedecomposed through SVD. The first column of U in the SVDdecomposition is then a Gabor while the first column of Vrepresents the time modulation (or vice-versa). One may then definean index of separability, , which is the fraction of the power in the matrix M which isaccounted for by the first separable matrix in thedecomposition.[2]

Nearest orthogonal matrix

It is possible to use the SVD of to determine the orthogonal matrix closest to . The closeness of fit is measured by the Frobenius norm of . The solution is the product .[3]This intuitively makes sense because an orthogonal matrix wouldhave the decomposition where is the identity matrix, so that if then the product amounts to replacing the singular values with ones.

A similar problem, with interesting applications in shape analysis, is the orthogonal Procrustes problem,which consists of finding an orthogonal matrix which most closely maps to . Specifically,

where denotes the Frobenius norm.

This problem is equivalent to finding the nearest orthogonalmatrix to a given matrix .

The Kabsch algorithm

The Kabsch algorithm (called Wahba's problem in other fields) uses SVD tocompute the optimal rotation (with respect to least-squaresminimization) that will align a set of points with a correspondingset of points. It is used, among other applications, to compare thestructures of molecules.

Other examples

The SVD is also applied extensively to the study of linearinverse problems, and is useful in theanalysis of regularization methods such as that of Tikhonov. It is widely used instatistics where it is related to principal component analysis andto Correspondence analysis, and insignal processing and pattern recognition. It is also used inoutput-only modal analysis, where the non-scaledmode shapes can be determined from the singularvectors. Yet another usage is latent semantic indexing in naturallanguage text processing.

The SVD also plays a crucial role in the field of quantum information, in a form oftenreferred to as the Schmidt decomposition. Through it,states of two quantum systems are naturally decomposed, providing anecessary and sufficient condition for them to be entangled: if the rank of the matrix is larger than one.

One application of SVD to rather large matrices is in numerical weather prediction,where Lanczos methods are used to estimatethe most linearly quickly growing few perturbations to the centralnumerical weather prediction over a given initial forward timeperiod – i.e. the singular vectors corresponding to the largestsingular values of the linearized propagator for the global weatherover that time interval. The output singular vectors in this caseare entire weather systems. These perturbations are then runthrough the full nonlinear model to generate an ensemble forecast, giving a handle onsome of the uncertainty that should be allowed for around thecurrent central prediction.

Another application of SVD for daily life is that point inperspective view can be unprojected in a photo using the calculatedSVD matrix, this application leads to measuring length (a.k.a. thedistance of two unprojected points in perspective photo) by markingout the 4 corner points of known-size object in a single photo.PRuler is a demo to implement this application by taking a photo ofa regular credit card

Relation to eigenvalue decomposition

The singular value decomposition is very general in the sensethat it can be applied to any m × n matrix whereaseigenvalue decomposition canonly be applied to certain classes of square matrices.Nevertheless, the two decompositions are related.

Given an SVD of M, as described above, the following tworelations hold:

The right-hand sides of these relations describe the eigenvaluedecompositions of the left-hand sides. Consequently:

In the special case that M is a normal matrix, which by definition must besquare, the spectral theorem says that it can beunitarily diagonalized using a basis of eigenvectors, so that it can be written for a unitary matrix U and a diagonal matrix D. WhenM is also positive semi-definite, thedecomposition is also a singular value decomposition.

However, the eigenvalue decomposition and the singular valuedecomposition differ for all other matrices M: theeigenvalue decomposition is where U is not necessarily unitary and D is notnecessarily positive semi-definite, while the SVD is where Σ is a diagonal positive semi-definite, and Uand V are unitary matrices that are not necessarily relatedexcept through the matrix M.

Existence

An eigenvalue λ of a matrix is characterized by thealgebraic relation M u = λ u. When M isHermitian, a variational characterization isalso available. Let M be a real n × n symmetric matrix. Definef:RnRby f(x) = xT M x. By the extreme value theorem, this continuousfunction attains a maximum at some u when restricted to theclosed unit sphere {||x|| ≤ 1}. By the Lagrange multipliers theorem, unecessarily satisfies

where the nabla symbol, , is the del operator.

A short calculation shows the above leads to M u = λu (symmetry of M is needed here). Therefore λ isthe largest eigenvalue of M. The same calculation performedon the orthogonal complement of u gives the next largesteigenvalue and so on. The complex Hermitian case is similar; theref(x) = x* M x is a real-valued function of2n real variables.

Singular values are similar in that they can be describedalgebraically or from variational principles. Although, unlike theeigenvalue case, Hermiticity, or symmetry, of M is no longerrequired.

This section gives these two arguments for existence of singularvalue decomposition.

Based on the spectral theorem

Let M be an m-by-n matrix with complexentries. M*M is positive semidefinite and Hermitian. By thespectral theorem, there exists a unitaryn-by-n matrix V such that

where D is diagonal and positive definite. PartitionV appropriately so we can write

Therefore V1*M*MV1 = D andV2*M*MV2 = 0. The latter meansMV2 = 0.

Also, since V is unitary,V1*V1 = I,V2*V2 = I andV1V1* +V2V2* = I.

Define

Then

We see that this is almost the desired result, except thatU1 and V1 are not unitary ingeneral, but merely isometries. To finish the argument, one simplyhas to "fill out" these matrices to obtain unitaries. For example,one can choose U2 such that

is unitary.

Define

where extra zero rows are added or removed to make thenumber of zero rows equal the number of columns ofU2. Then

which is the desired result:

Notice the argument could begin with diagonalizing MM*rather than M*M (This shows directly that MM* andM*M have the same non-zero eigenvalues).

Based on variational characterization

The singular values can also be characterized as the maxima ofuTMv, considered as a function of uand v, over particular subspaces. The singular vectors arethe values of u and v where these maxima areattained.

Let M denote an m × n matrix with realentries. Let and denote the sets of unit 2-norm vectors inRm and Rnrespectively. Define the function

for vectors u ∈ and v ∈ . Consider the function σ restricted to × . Since both and are compact sets, their product is also compact. Furthermore, sinceσ is continuous, it attains a largest value for at least onepair of vectors u ∈ and v ∈ . This largest value is denoted σ1 and thecorresponding vectors are denoted u1 andv1. Since is the largest value of it must be non-negative. If it were negative, changing the sign ofeither u1 or v1 would make itpositive and therefore larger.

Statement: u1, v1 areleft and right-singular vectors of M with correspondingsingular value σ1.

Proof: Similar to the eigenvalues case, by assumption thetwo vectors satisfy the Lagrange multiplier equation:

After some algebra, this becomes

and

Multiplying the first equation from left by and the second equation from left by and taking ||u|| = ||v|| = 1 into account gives

So σ1 = 2 λ1 = 2λ2. By properties of the functional φdefined by

we have

Similarly,

This proves the statement.

More singular vectors and singular values can be found bymaximizing σ(u, v) over normalized u,v which are orthogonal to u1 andv1, respectively.

The passage from real to complex is similar to the eigenvaluecase.

Geometric meaning

Because U and V are unitary, we know that thecolumns u1,...,um of Uyield an orthonormal basis ofKm and the columnsv1,...,vn of V yield anorthonormal basis of Kn (with respect tothe standard scalar products on these spaces).

The linear transformationT:KnKm that takes a vector x toMx has a particularly simple description with respect tothese orthonormal bases: we have T(vi) =σi ui, for i =1,...,min(m,n), where σi is thei-th diagonal entry of Σ, andT(vi) = 0 for i> min(m,n).

The geometric content of the SVD theorem can thus be summarizedas follows: for every linear mapT:KnKm one can find orthonormal bases ofKn and Km suchthat T maps the i-th basis vector ofKn to a non-negative multiple of thei-th basis vector of Km, and sendsthe left-over basis vectors to zero. With respect to these bases,the map T is therefore represented by a diagonal matrix withnon-negative real diagonal entries.

To get a more visual flavour of singular values and SVDdecomposition —at least when working on real vector spaces—consider the sphere S of radius one inRn. The linear map T maps thissphere onto an ellipsoid in Rm.Non-zero singular values are simply the lengths of the semi-axes of this ellipsoid. Especially whenn=m, and all the singular values are distinct andnon-zero, the SVD of the linear map T can be easily analysedas a succession of three consecutive moves:consider the ellipsoid T(S) and specifically itsaxes; then consider the directions inRn sent by T onto these axes. Thesedirections happen to be mutually orthogonal. Apply first anisometry v* sending these directions to the coordinate axesof Rn. On a second move, apply an endomorphism d diagonalized along thecoordinate axes and stretching or shrinking in each direction,using the semi-axes lengths of T(S) as stretchingcoefficients. The composition d o v*then sends the unit-sphere onto an ellipsoid isometric toT(S). To define the third and last move u,apply an isometry to this ellipsoid so as to carry it overT(S). As can be easily checked, the compositionu o d o v*coincides with T.

Calculating the SVD

Numerical Approach

The SVD of a matrix M is typically computed by a two-stepprocedure. In the first step, the matrix is reduced to a bidiagonal matrix. This takesO(mn2) floating-point operations (flops),assuming that mn (this formulation uses thebig O notation). The second step is to computethe SVD of the bidiagonal matrix. This step can only be done withan iterative method (as with eigenvalue algorithms). However, inpractice it suffices to compute the SVD up to a certain precision,like the machine epsilon. If this precision isconsidered constant, then the second step takes O(n)iterations, each costing O(n) flops. Thus, the first step ismore expensive, and the overall cost is O(mn2)flops (Trefethen& Bau III 1997, Lecture 31).

The first step can be done using Householder reflections for a cost of4mn2 − 4n3/3 flops, assumingthat only the singular values are needed and not the singularvectors. If m is much larger than n then it isadvantageous to first reduce the matrix M to a triangularmatrix with the QR decomposition and then use Householderreflections to further reduce the matrix to bidiagonal form; thecombined cost is 2mn2 + 2n3flops (Trefethen& Bau III 1997, Lecture 31).

The second step can be done by a variant of the QRalgorithm for the computation of eigenvalues, which was firstdescribed by Golub & Kahan (1965). The LAPACKsubroutine DBDSQR[4]implements this iterative method, with some modifications to coverthe case where the singular values are very small (Demmel& Kahan 1990). Together with a first step usingHouseholder reflections and, if appropriate, QR decomposition, thisforms the DGESVD[5]routine for the computation of the singular valuedecomposition.

The same algorithm is implemented in the GNU Scientific Library (GSL). The GSLalso offers an alternative method, which uses a one-sided Jacobiorthogonalization in step 2 (GSLTeam 2007). This method computes the SVD of the bidiagonalmatrix by solving a sequence of 2-by-2 SVD problems, similar to howthe Jacobi eigenvalue algorithmsolves a sequence of 2-by-2 eigenvalue methods (Golub& Van Loan 1996, §8.6.3). Yet another methodfor step 2 uses the idea of divide-and-conquereigenvalue algorithms (Trefethen& Bau III 1997, Lecture 31).

Analytic result of 2-by-2 SVD

The singular values of a 2-by-2 matrix can be foundanalytically. Let the matrix be where are complex numbers that parameterize the matrix, is the identity matrix, and denote the Pauli matrices. Then its two singularvalues are given by

Reduced SVDs

In applications it is quite unusual for the full SVD, includinga full unitary decomposition of the null-space of the matrix, to berequired. Instead, it is often sufficient (as well as faster, andmore economical for storage) to compute a reduced version of theSVD. The following can be distinguished for an m×nmatrix M of rank r:

Thin SVD

Only the n column vectors of U corresponding tothe row vectors of V* are calculated. The remaining columnvectors of U are not calculated. This is significantlyquicker and more economical than the full SVD ifn<<m. The matrixUn is thus m×n, Σn isn×n diagonal, and V is n×n.

The first stage in the calculation of a thin SVD will usually bea QR decomposition of M, which can makefor a significantly quicker calculation ifn<<m.

Compact SVD

Only the r column vectors of U and r rowvectors of V* corresponding to the non-zero singular valuesΣr are calculated. The remaining vectors of U andV* are not calculated. This is quicker and more economicalthan the thin SVD ifr<<n. The matrixUr is thus m×r, Σr isr×r diagonal, and Vr* isr×n.

Truncated SVD

Only the t column vectors of U and t rowvectors of V* corresponding to the t largest singularvalues Σt are calculated. The rest of the matrix isdiscarded. This can be much quicker and more economical than thecompact SVD if t<<r.The matrix Ut is thus m×tt is t×t diagonal, andVt* is t×n'.

Of course the truncated SVD is no longer an exact decompositionof the original matrix M, but as discussed above, the approximate matrix is in a very useful sense the closest approximation to Mthat can be achieved by a matrix of rank t.

Norms

Ky Fan norms

The sum of the k largest singular values of M is amatrix norm, the Ky Fank-norm of M.

The first of the Ky Fan norms, the Ky Fan 1-norm is the same asthe operator norm of M as a linear operatorwith respect to the Euclidean norms of Kmand Kn. In other words, the Ky Fan 1-normis the operator norm induced by the standard l2Euclidean inner product. For this reason, it is also called theoperator 2-norm. One can easily verify the relationship between theKy Fan 1-norm and singular values. It is true in general, for abounded operator M on (possibly infinite dimensional)Hilbert spaces

But, in the matrix case, M*M½ is a normal matrix, so ||M* M||½is the largest eigenvalue of M* M½, i.e. thelargest singular value of M.

The last of the Ky Fan norms, the sum of all singular values, isthe trace norm (also known as the 'nuclear norm'),defined by ||M|| = Tr[(M*M)½] (theeigenvalues of M* M are the squares of the singularvalues).

Hilbert–Schmidt norm

The singular values are related to another norm on the space ofoperators. Consider the Hilbert–Schmidt inner producton the n × n matrices, defined by . So the induced norm is . Since trace is invariant under unitary equivalence, thisshows

where are the singular values of M. This is called theFrobenius norm, Schatten 2-norm, orHilbert–Schmidt norm of M. Direct calculation showsthat if

the Frobenius norm of M coincides with

Tensor SVD

Unfortunately, the problem of finding a low rank approximationto a tensor is ill-posed. In other words, there doesn't exist abest possible solution, but instead a sequence of better and betterapproximations that converge to infinitely large matrices. But inspite of this, there are several ways of attempting thisdecomposition. There exist two types of tensor decompositions whichgeneralise SVD to multi-way arrays. One decomposition decomposes atensor into a sum of rank-1 tensors, see Candecomp-PARAFAC(CP) algorithm. The CP algorithm should not be confused with arank-R decomposition but, for a given N, itdecomposes a tensor into a sum of N rank-1 tensors thatoptimally fit the original tensor. The second type of decompositioncomputes the orthonormal subspaces associated with the differentaxes or modes of a tensor (orthonormal row space, column space,fiber space, etc.). This decomposition is referred to in theliterature as the Tucker3/TuckerM, M-mode SVD,multilinear SVD and sometimes referred to as a higher-orderSVD (HOSVD). In addition, multilinearprincipal component analysis in multilinear subspace learninginvolves the same mathematical operations as Tucker decomposition,being used in a different context of dimensionality reduction.

Bounded operators on Hilbert spaces

The factorization can be extended to a bounded operator M on a separableHilbert space H. Namely, for any bounded operator M,there exist a partial isometry U, a unitaryV, a measure space (X,μ),and a non-negative measurable f such that

where is the multiplication by f onL2(X, μ).

This can be shown by mimicking the linear algebraic argument forthe matricial case above. VTf V* is the uniquepositive square root of M*M, as given by the Borel functional calculus forself adjoint operators. The reason whyU need not be unitary is because, unlike the finitedimensional case, given an isometry U1 withnontrivial kernel, a suitable U2 may not be foundsuch that

is a unitary operator.

As for matrices, the singular value factorization is equivalentto the polar decomposition for operators:we can simply write

and notice that U V* is still a partial isometry whileVTf V* is positive.

Singular values and compact operators

To extend notion of singular values and left/right-singularvectors to the operator case, one needs to restrict to compact operators. Itis a general fact that compact operators on Banach spaces have only discrete spectrum. Thisis also true for compact operators on Hilbert spaces, sinceHilbert spaces are a special case of Banachspaces. If T is compact, every nonzero λ in itsspectrum is an eigenvalue. Furthermore, a compact self adjointoperator can be diagonalized by its eigenvectors. If M iscompact, so is M*M. Applying the diagonalization result, theunitary image of its positive square root Tf hasa set of orthonormal eigenvectors {ei}corresponding to strictly positive eigenvalues{σi}. ForanyψH,

where the series converges in the norm topology on H.Notice how this resembles the expression from the finitedimensional case. The σi 's are called thesingular values of M. {U ei} and {Vei} can be considered the left- and right-singularvectors of M respectively.

Compact operators on aHilbert space are the closure of finite-rank operators in the uniformoperator topology. The above series expression gives an explicitsuch representation. An immediate consequence of this is:

Theorem M is compact if and only if M*M iscompact.

History

The singular value decomposition was originally developed bydifferential geometers, who wished todetermine whether a real bilinear form could be made equal to another byindependent orthogonal transformations of the two spaces it actson. Eugenio Beltrami and Camille Jordan discovered independently, in1873 and 1874 respectively, that the singular values of thebilinear forms, represented as a matrix, form a complete set of invariants for bilinear forms underorthogonal substitutions. James Joseph Sylvester also arrived atthe singular value decomposition for real square matrices in 1889,apparently independent of both Beltrami and Jordan. Sylvestercalled the singular values the canonical multipliers of thematrix A. The fourth mathematician to discover the singularvalue decomposition independently is Autonne in 1915, who arrivedat it via the polar decomposition. The first proof ofthe singular value decomposition for rectangular and complexmatrices seems to be by CarlEckart and Gale Young in 1936;[6]they saw it as a generalization of the principal axis transformation for Hermitian matrices.

In 1907, Erhard Schmidt defined an analog ofsingular values for integral operators (which are compact,under some weak technical assumptions); it seems he was unaware ofthe parallel work on singular values of finite matrices. Thistheory was further developed by Émile Picard in 1910, who is the first to callthe numbers singular values (or rather, valeurssingulières).

Practical methods for computing the SVD date back to Kogbetliantz in 1954, 1955 and Hestenes in 1958.[7]resembling closely the Jacobi eigenvalue algorithm,which uses plane rotations or Givens rotations. However, these werereplaced by the method of Gene Golub and William Kahan published in 1965,[8]which uses Householder transformations orreflections. In 1970, Golub and Christian Reinsch[9]published a variant of the Golub/Kahan algorithm that is still theone most-used today.

See also

Notes

  1. ^ DeAngelis GC, Ohzawa I, Freeman RD(October 1995). "Receptive-fielddynamics in the central visual pathways". TrendsNeurosci. 18 (10): 451–8. doi:10.1016/0166-2236(95)94496-R.PMID8545912.
  2. ^ Depireux DA, Simon JZ, Klein DJ,Shamma SA (March 2001). "Spectro-temporal response field characterization with dynamicripples in ferret primary auditory cortex". J.Neurophysiol. 85 (3): 1220–34. PMID11247991.
  3. ^ The SingularValue Decomposition in Symmetric (Lowdin) Orthogonalization andData Compression
  4. ^ Netlib.org
  5. ^ Netlib.org
  6. ^ Eckart, C.; Young, G. (1936). "The approximationof one matrix by another of lower rank". Psychometrika 1 (3): 211–8. doi:10.1007/BF02288367.
  7. ^ Hestenes, M. R. (1958). "Inversion ofMatrices by Biorthogonalization and Related Results". Journal ofthe Society for Industrial and Applied Mathematics 6(1): 51–90. doi:10.1137/0106005. JSTOR2098862. MR0092215.
  8. ^ Golub, G. H.; Kahan, W. (1965). "Calculating the singularvalues and pseudo-inverse of a matrix". Journal of the Societyfor Industrial and Applied Mathematics: Series B, NumericalAnalysis 2 (2): 205–224. doi:10.1137/0702016. JSTOR2949777. MR0183105.
  9. ^ Golub, G. H.; Reinsch, C. (1970). "Singularvalue decomposition and least squares solutions". NumerischeMathematik 14 (5): 403–420. doi:10.1007/BF02163027.MR1553974.

References

External links

This article's use of external links may not followWikipedia's policies or guidelines. Please improve this article by removing excessive or inappropriate external links, andconverting useful links where appropriate into footnote references.(January 2010)

Implementations

Libraries that support complex and real SVD

  • NMath (NMathSVD Documentation) Math and Statistics libraries for .NET.
  • Libraries that support real SVD

  • ALGLIB,includes a partial port of the LAPACK to C++, C#, Delphi, VisualBasic, etc.
  • JAMA, aJava matrix package provided by the NIST.
  • COLT,a Java package for High Performance Scientific and TechnicalComputing, provided by CERN.
  • Eigen,a templated C++ implementation.
  • redsvd,efficient randomized algorithm on top of C++ Eigen.
  • PROPACK,computes the SVD of large and sparse or structured matrices, inFortran 77.
  • SVDPACK, a libraryin ANSI FORTRAN 77 implementing four iterative SVD methods.Includes C and C++ interfaces.
  • SVDLIBC,re-writing of SVDPACK in C, with minor bug fixes.
  • SVDLIBJ, a Java port of SVDLIBC. (Also available as anexecutable .jar similar to SVDLIBC in the S-Space Package)
  • SVDLIBC#SVDLIBC converted to C#.
  • dANN partof the linear algebra package of the dANN java Artificial Intelligence library bySyncleus, Inc.
  • GraphLabGraphLab collaborative filtering library, large scale parallelimplementation of SVD (in C++) for multicore.
  • Texts and demonstrations

    Songs

      

    愛華網(wǎng)本文地址 » http://www.klfzs.com/a/25101017/353697.html

    更多閱讀

    鍵盤掃描程序FPGA 矩陣鍵盤掃描程序

    下面是一個4*4的矩陣鍵盤,是我們老師為了給我們練手而買的,今天上午老師讓我們編寫了鍵盤掃描程序,并用板上的LED顯示出來。這里有三個程序,前面兩個是別人寫的,后面一個是我自己寫的。 網(wǎng)上下的程序如下:module key (clk, //50MHZ res

    .cvs文件 - 逗號分隔值文件 逗號分隔文件

    CSV逗號分隔值文件(Comma Separated value),是一種用來存儲數(shù)據(jù)的純文本文件格式,通常用于電子表格或數(shù)據(jù)庫軟件。CSV逗號分隔值文件規(guī)則:0 開頭是不留空,以行為單位。1 可含或不含列名,含列名則居文件第一行。

    關(guān)于“矩陣求逆引理” 分塊矩陣求逆

    昨天晚上我看天線陣列的論文,其中有一處表達(dá)式?jīng)]有看明白怎么回事。后來查閱附錄,找到了一個“矩陣求逆引理”,其內(nèi)容為:若矩陣A∈CN×N,C∈CN×N,均為非奇異矩陣,矩陣B∈CN×M,D∈CM×N,則矩陣A+BCD具有逆矩陣:(A+BCD)-1=A-1

    matlab符號表達(dá)式 matlab表示分段函數(shù)

    符號表達(dá)式Help Search: Symbolic MathToolbox第一節(jié)包括的內(nèi)容有微積分、線性代數(shù)、化簡代數(shù)表達(dá)式、方程求解、特殊的數(shù)學(xué)函數(shù)、變量精度算法和數(shù)學(xué)變換微積分:微分、積分、極限、求和(西格馬)、泰勒級數(shù)線性代數(shù):求逆、行列式、

    如何修改注冊表鍵值? 修改注冊表鍵值

    點(diǎn)擊開始然后點(diǎn)擊運(yùn)行輸入regedit進(jìn)入注冊表編輯器。注冊表編輯器與資源管理器的界面相似。左邊窗格中,由"我的電腦"開始,以下是六個分支,每個分之名都以HKEY開頭,稱為主鍵(KEY),展開后可以看到主鍵還包含次級主鍵(SubKEY)。當(dāng)單擊某一主

    聲明:《奇異值分解SingularValueDecomposition singular value 矩陣》為網(wǎng)友殤落紅塵分享!如侵犯到您的合法權(quán)益請聯(lián)系我們刪除

    婷婷在线免费视频观看| 日韩欧美中文亚洲一区| 国产av一区二区三区免费观看| 瑟瑟免费在线观看| 56porm在线视频| 久久成人熟女热视频| 久久99在线观看视频| 视频一视频二视频三| 亚洲自拍偷拍动图| 国产高清蜜臀久久99| 加勒比东京热综合久久| 亚洲自拍 校园春色| 日韩中文亚洲字幕av| 天天干天天操天天射网| 中文字幕麻豆韩日在线| 91免费观看国产精品| 超碰成人手机免费在线观看| 五月婷婷丁香花开网| 两个97年失恋疗伤在线观看| 日韩av一区二区三区蜜桃| 国产精品日视频不卡| 日韩中文字幕一二| www,夜色,com| 久久视频免费一区二区| 精品尤物女神在线观看| 精品久久久久久久毛片微露脸| 五月天丁香婷久久爱| 激情五月天福利婷婷| 玩弄放荡人妻少妇精品| 久久婷婷色综合日韩一区一区| 欧美激情中文字幕一区二区| 五月婷婷开心之中文字幕| 久久久久久久久久久一级片| 欧美成人一区二区免| 午夜影院成人福利| 天天摸天天高潮天天爽| 海角91成人一区二区三区| 亚洲激情国产专区| 国产亚洲欧美视频一区二区| 国产一区二区三区美女在线观看| 日韩国产中文字幕人妻| 亚洲午夜青青草久久久久| 香蕉av蜜臀av一区二区| 国内女人精品一区二区三区| 蜜臀av精一区二区三区| 97网在线视频免费播放| 中文字幕日本激情| 精品少妇久久一区二区三区| 男人的天堂精品久久| 国产亚洲成人av在线播放| 欧美一区激情大胆在线播放 | 日韩av高清在线影院| 国产熟妇一区二区三区av| 亚洲一区二区三区四区五区福利| 日本少妇激情视频免费看| 999热这里只有精品视频| 黄色亚洲电影网站在线观看| 91大神 在线播放| 99热6这里只有精品国产| 日韩不卡一区二区在线观看| 亚洲熟妇欲色一区一区三区| 亚洲少妇人妻系列| 国产又大又长又粗又猛又爽| 色秘乱码一区二区三区在线| 999国产精品成人| 欧美成人激情视频一区二区| 日韩欧美中文亚洲一区| 久久久久9999免费视频| 91精品国产久久久久久| 亚洲成人另类综合| 玩弄少妇人妻500系列| 青青青青青青青青草视频在线观看 | 日韩av高清电影手机在线观看| 91精选一区二区三区久久久| 精品尤物女神在线观看| 国产精品美女丝袜一区二区| 九九热在线播放视频| 日韩亚洲成人aα在线| 山东熟女高潮嗷嗷叫| 全亚洲最大资源网| evanotty精品二区| 久久久久久99国产精品免费| 日韩国产中文字幕人妻| 夜夜操夜夜操天天操天天操| 91入口在线观看天天| 欧美日韩私拍福利视频| 婷婷在线免费视频观看| 污在线观看视频一区| 欧美oldman色老头| 91入口在线观看天天| 丰满大屁股熟妇偷拍| 久久久久69成人精品视频| 欧美激情在线久久久| 放荡的人妻少妇视频| 91精品国产综合久久久蜜臀| 午夜精品免费福利视频一区二区| 日本成人有码在线 中文字幕| 国产一区二区三区 久久| 国产精品久久久久久成人免费| 中文字幕人妻熟女av| 新久久久久久久久久久免费| 日b视频在线免费| 亚洲婷婷在线视频观看| 麻豆人妻少妇精红桃视频| 全部免费特黄特色大片看片| 成人午夜精品久久av| 日本 亚洲 久久| 中老熟妇一区二区| 久久综合久久综合亚洲| 国产黑丝美女办公室激情啪啪| 日韩在线中文字幕免费| 久久av少妇av高潮| 少妇高潮久久久久久一代女皇| 日韩一区二区三区成人| av的天堂男人的天堂| 成人国产av精品麻豆网| 国产男男gay激情| 久久久久久精品免费免费WE| 亚洲第一成人在线观看av| 1024你懂得av在线| 国产午夜精品在线免费观看| 国产人妻aⅴ一区二区三区| 国产av一区二区三区免费观看| 中文字幕亚洲日韩欧美一区| 久久久9视频免费观看| 国产一区日本一区欧美一区| 91是什么意思网络污词| 国产一区二区三区 久久| 日本久久免费在线观看| 久久久中文字幕视频| 日韩av区一区二区三| 亚洲图库另类图片日韩| 日韩精品视频网站免费看| 日本熟妇高清在线观看| 日韩网站在线免费观看| 国产成人av在线观看入口| 人人澡人人澡人人妻| 91亚洲精品在线免费观看| 国产av一二区三区| 久久综合久久综合亚洲| 人人妻人人爽狠狠干| 亚洲视频频道在线| 伊人久久大综合网站| 亚洲成人精品国产av| 婷婷久免费电影在线视频| www中文字幕日本| 一区二区三区久久久av| 日韩中文字幕系列有码精品视频| 九九热精品免费视频观看| 五月天,色中文字幕| 久久精品国产96精品| 日韩成人在线观看视频| av成人影院在线播放| 大吊视频一区二区三区四区| 日韩精品中文字幕巨臀人妻中出| 亚洲ⅴa久久久噜噜噜久久狠狠| 亚洲a在线免费视频| 国产一区二区三区四区99| 狠狠做深爱婷婷综合激情 | 日韩欧美亚洲三四区| 亚洲av毛片av| 欧美日韩精品视频第一页| 日韩国产另类欧美在线观看| 中文字幕乱码一区二区av| 国内精品 一区二区三区| 肥臀大腚沟肥臀大屁股一区二区| 亚洲三级av在线播放| 青青久视频在线观看| 国产日韩av网站在线观看| 日本 亚洲 久久| 人妻熟女av一区| 久久的精品一区二区三区| 国产又粗又猛又爽又黄又大| 国产综合精品久久99之一| 久久久久久久久蜜桃| 一道精品视频一区二区三区视频| 麻豆vpswindows精品| 久久re视频在线免费观看| 中文字幕一区中文字幕| 亚洲男人天堂加勒比| 人妻在线视频福利| 日本熟妇厨房xxxⅹ乱| 日本一区二区三区久久| 深田咏美亚洲一区二区| 欧美精产国品一二三类产品| 久久99视频完整版| 国产麻豆精品久久久久久久久| 一区二区三区四区高清av| 天天色天天操天天综合网| 久久精品美女性感国产综合av| 日韩草草草草草草草草草| 亚洲精品日韩在线观看17c| 亚洲精品高清视频在线观看| 伊人久久大综合网站| 麻豆精品国产一二三免费| 2023av在线视频| 成人自拍视频手机免费在线观看 | 国产 日韩 精品 欧美| 欧美日韩极品妻在线观看| 国产又粗又猛又爽又黄的视频网站| 日韩精品有码自拍| 国产极品嫩模在线观看91| 国产尤物在线视精品在亚洲| 亚洲五月天久久久噜噜噜噜| 国产剧情在线观看一区二区| 精品成人一区二区三区在线不卡| av中文字幕人妻丝袜在线| 成人首发男人的天堂久久久 | 久久精品免费看网站| 亚洲男人天堂2024| 久久精品视频免费视频| 日韩不卡av电影网| 婷婷激情综合一区二区| 蜜桃av一区二区视频| 精东果冻视频在线观看| 妖精视频在线观看一区二区三区| 蜜桃久久久久久久久久久久| 亚洲情色电影网站| 欧美一区二区三区午夜91| 欧美综合激情另类专区| 国产一区二区三区欧美精品| 一本色道久久88综合亚洲精品是| 日本女人自摸视频| 日本 亚洲 久久| 蜜桃视频日韩欧美北条麻妃| 五月天中文字幕在线婷婷| 五月婷婷六月丁香动漫| 国产日韩在线成人免费视频 | avtt天堂网久久精品| 一本久久综合亚洲| 国产av熟女白浆精品视频| 亚洲日本成人三级少妇| 韩日av电影在线观看| 日本久久激情视频| 亚洲一区二区三区中文久久| 国产成人自拍视频网| 国产美女啪啪18禁| 伊人网免费看黄片| 国产av一区二区三区免费观看| 精品久久www人人爽人人| 中文字幕人妻少妇一区二区| 中文人妻视频免费在线99| 息子嫁中文字幕一区二区三区| 天堂影院在线免费观看| 五月婷婷亚洲综合色| 日韩色图在线影院| 久久久999亚洲精品| 91久久精品国产91久| 91精品啪在线观看国产91蜜桃| 国产成人av在线观看入口| 天天舔天天爱天天做| 色综合久久久久久久久中文| 五月天丁香婷久久爱| 制服护士jk学生丝袜秘书套装| 99久在线视频观看| 亚洲ⅴa久久久噜噜噜久久狠狠 | 久久精品视频免费视频| brazzerss色欧美| 亚洲精选在线视频| 日韩综合一区二区三区| youtube视频字幕中文| 精品999高清视频| 亚洲五月婷婷丁香综合| 日本五十路六十路七十路| 国产一区二区三区 久久| 在线国产偷拍自拍| 亚洲高清精品人妻自拍| 国产一区二区三区高清视频| 久久久久9999免费视频| 中文字幕亚洲一区嗯嗯| 人妻熟女中文字幕在线观看| 美女国产精品美女在线观看| 新久久久久久久久久久免费| 国产剧情在线观看一区二区| 日韩午夜宅男福利| 天天插天天透天天婷婷| 凹凸国产av熟女白浆| 久久国产精品99国产精2021| 深夜激情五月天久久视频| 日韩久久久久久久久久久久久| 日本熟妇免费一区二区三区| 国产美女www免费| 777精品午夜一区二区毛片| 绝色少妇高潮3在线观看| 久久99精品色婷婷| 五月婷婷激情在线视频播放| 日韩熟妇中文字幕| 一本色道久久88综合亚洲精品是| 成人福利在线播放免费| 大香蕉大香蕉大香蕉最新| 日本av电影av| 国产又粗又硬又黄又爽的视频| 99精品国产999| 免费人成黄页网站大全在线观看| 国产精品自拍偷拍p| 亚洲熟妇熟女久久精品综合| 精品人妻巨乳一区二区三区| av天堂网在线播放| 国产又粗又白又嫩又爽| 久久久精品亚洲中文字幕| aaa精品视频免费在线| 国产久精品搜索视频| 中文字幕在线人妻| 丝袜美腿aⅴ一区二区三区| 天天躁日日躁狠狠躁av中文| 成人国内精品视频在线观看日韩 | 国产精品成人久久久久久| 亚州国产成人精品久久久| 亚洲国产日韩精品视频| 国内精品视频一区二区三| 日日橹狠狠爱欧美| 人人妻人人澡人人爽人人sex网| 丁香六月激情啪啪啪啪啪啪啪| 日本五十路六十路七十路| jul909中文字幕在线| 瑟瑟免费在线观看| 欧美日韩特一级大片| 91在线精品小视频| 绝色少妇高潮3在线观看| 伊人久久大综合网站| 人妻少妇视频在线播放| 精品久久一区av中文字幕| 久久av红桃一区二区禁漫 | 成人首发男人的天堂久久久| 人人妻人人爽人人艹| 少妇人妻一级视频观看| 色婷婷综合久久久久精品中文| 成人日韩视频中文字幕| 999久久久视频黄色| 亚洲精品久久乱码中文字幕| 天天干天天玩天天操| av影院永久免费在线看| 人妻中文字幕高清中出在线视频| 人妻丰满熟妇av无码区ll| 国产一二三不卡视频| 亚洲天堂亚洲天堂中文字幕| 国产精品久久久久久网站| 亚洲少妇人妻系列| 777精品午夜一区二区毛片| 国产精品稀缺资源av在线| 欧美日韩亚洲免费一区二区| 亚洲少妇插b色图| 日韩综合一区二区三区| 日日日夜夜夜精品| 麻豆www久久国产精品| 日韩亚洲欧美在线com| 精品国产一区二区三区av天堂| 国产精品久久久久久7777| 五月激情四射综合| 不卡无在一区二区三区四区 | 国产女人久久久久久| 可以直接看的黄色av网站| 久久久久久精品免费免费WE| 国产av自拍亚洲区| 中文字幕婷婷在线观看| 99热这里只有精品色| 日本午夜高清在线| 亚洲成人三级黄色片| 高清露脸爆极品白富美av| 婷婷六月天狠狠爱| 精品人伦一区二区三区四区蜜桃牛| 日韩男叉女下面视频| 久久综合精品乱码中文| 久久亚洲福利视频免费| 夜夜操夜夜操天天操天天操| 亚洲 制服 人妻 久久| 亚洲午夜青青草久久久久| 亚洲一区二区五十路熟女激情中出| 臀蜜91精品国产免费观看| 99久久久精品四川精品| 熟女人妻中文字幕专区| 91免费国产青青碰| 日韩在线一二区不卡| 美女亚洲第一区二区| 中文字幕一区二区久久人妻| 最近的最好看的中文字幕| 亚洲国产av不卡婷婷| 国产午夜精品夜夜骚久久久久| 麻豆精品国产一二三免费| 久久久精品亚洲天堂网站| 日本av电影av| 伊人99久久婷婷国产视频| 久久99爱精品999| 全部免费特黄特色大片看片| 国产精品久久久久久7777| 熟女少妇水多一区二区三区| 亚洲高清电影一区| 久久亚洲福利视频免费| 亚洲欧美国产精品成人| 亚洲午夜久久久久影院| 中文字幕人妻少妇一区二区| 五月婷婷之综合激情在线| 人人精品,人人妻| 伊人久久首页精品| 国产成人一区二区三区影院首页| 亚洲天堂国产免费| 热久久久久这里有精品| 丰满的少妇2一区二区| 麻豆91免费视频网站| 中文字幕亚洲一区嗯嗯| 亚洲91久久久久久久久久久| 精品蜜桃一区二区三久久| 欧美国产日韩久久一区| 不卡一二三区在线视频| 香蕉av蜜臀av一区二区| 久久久99视频在线免费观看| 93成人在线播放视频| 全亚洲最大资源网| 在线视频人妻中文字幕| 麻豆成人免费视频一区二区| 人妻夜夜爽天天爽欧美色院| 日韩影片 欧美激情| 人人精品,人人妻| 日韩欧美中文字幕综合网| 欧美一区二区三区无| 国产欧美电影一区二区三区| 国产亚洲欧美视频一区二区| 国产女人久久久久久| 欧美国产精品久久久久久免费| 精品少妇久久一区二区三区| 人妻熟女久久久久| 婷婷激情激情五月天| 亚洲国产成人女人久久久| 丁香六月激情啪啪啪啪啪啪啪| 999人妻熟妇一区二区三区精品| 粉嫩一区二区三区在线观看| 久久久久久有国产精品| 五月婷婷亚洲综合色| 亚洲精品综合免费| 看吊视频一区二区三| 99久在线视频观看| 亚洲激情av电影| 97日韩在线免费视频网站| 日韩成人免费电影在线| 国产精品美女丝袜一区二区| 精品人妻午夜在线视频播放| 五月婷婷开心之中文字幕| 亚洲成人精品国产av| 青青青青久久久久久| 精品无人区无码乱码毛片国产| 蜜臀久久精品99国产| 人妻熟女中文字幕电影| 女人18毛片一区二区三区| 天天干天天操天天射天天| 熟女义母乱码中文字幕| 丝袜人妻丝袜美腿呻吟| 中文字幕日韩一区二区三区本高 | 淫秽网站在线播放| 999热国内精品在线免费视频| 一本色道久久88综合亚洲精品是| 91大神 在线播放| 色婷婷av一区二区三区四川| 91色porny在线| 日本加勒比免费高清视频| 亚洲高清精品人妻自拍| 午夜欧美久久久久久久久| 日日夜夜av资源| 黄色大片黄色一级大片| 熟妇人妻无乱码中文字幕蜜桃| 自拍偷拍 国产自拍| 欧美日韩免费网站观看| 国产精品稀缺资源av在线| 国产欧美电影一区二区三区| 在线免费看的黄片视频| 日日日夜夜夜精品| 五月天,色中文字幕| 蜜桃精品一区二区在线看| 色婷婷综合久久久久精品中文| 伊人成色综合视频| 成人亚洲一区二区三区在线观看| 欧美日韩激情亚洲综合| 97色伦综合在线欧美视频| 国产999精品999| 亚洲天堂最新版www| 日韩av一级大片| 精品无人区无码乱码毛片国产| 日韩一区二区免费av| 国产一区二区青青精品久久 | 加勒比图片区不卡97| 成人av在线中文字幕一区| 欧美在线视频一区二区三区| 色五五月五月开亚洲婷婷| 人妻精品人妻一区二区三区四五| 日韩精品免费二区三区三区| 日日日夜夜夜精品| 一区二区三区精品少妇人妻| 99热在线免费这里只有精品| 亚洲欧美另类久久精品| 日本成人有码在线 中文字幕| 五月激情综合网五月激情| 国产香蕉特级一区二区三区| 天天精彩久久中文字幕| 99成人免费视频观看| 中文字幕日韩一区二区三区本高| 日本第一中文字幕官网| 91综合精品久久久久| 日韩精品视频网站免费看 | 日韩一区二区中文字幕| 最新日韩av手机在线观看| 一本色道久久亚洲精品av| 一本久道久久综合狠狠| 在线播放日韩av不卡| 国产一区二区三区在线观看网站| av午夜久久久久久久| 人妻精品人妻一区二区三区四五| 国产精品久久久久久久久密臀| 亚洲精品国产呦系列| 制服护士jk学生丝袜秘书套装| 中文人妻视频免费在线99| 日韩欧美成年一级| 麻豆成人免费视频一区二区| 国产精品久久久久久网站| 老熟女av老熟女xx| 日韩精品日韩精品日韩精品| 亚洲婷婷在线视频观看| 99re日本免费视频| 93成人在线播放视频| 亚洲综合欧美另类尤物| 亚洲av日韩在线免费观看| 91九色蝌蚪蜜桃臀| 伊人网免费看黄片| 日韩欧美亚洲三四区| 日韩视频高清在线观看精品| 人妻还是视频在线播放| 成人精品漫画h动漫日本| 99热在线只有精品6| 在线视频蜜桃视频| 美女国产精品美女在线观看| 国产一区二区三区四区99| 日韩一区二区中文字幕| 中文人妻视频免费在线99| 久久精品国产字幕高潮37| 最新欧美日韩一区二区| 最新99热这里只有精品| 色哟哟 日韩精品| 一道精品视频一区二区三区视频 | 中文字幕麻豆韩日在线| 国产精品兄妹在线观看麻豆| 麻豆高清视频在线免费观看| 国产福利视频一区在线| 亚洲成人激情图区| 日本 亚洲 久久| 久久久久久有国产精品| 久久久久久99国产精品免费| 欧美亚日韩一区二区三区| 日本中文字幕在线观看视频免费| 五十路丰满大屁股老熟女| 人人妻人人爽狠狠干| 五月婷婷之综合激情在线| 久久av少妇av高潮| 2020精品极品色视频| 日本人妻制服诱惑| 人妻丰满精品熟女| 日韩男女一进一出| 日韩在线一二区不卡| 中文字幕久久人妻被中出一区精品| 日韩人妻字幕在线| 高清一区二区三区四区免费视频| 最新欧美日韩一区二区| 麻豆精品国产一二三免费| 91精品国产久久久久久| 视频二区 中文字幕 人妻中文| 操穴电影中文字幕人妻中文字幕| 韩日av电影在线观看| 亚洲视频色图天堂| 亚洲国产成人精品网站| 国产 日韩 欧美片| 日韩丝袜一区av| 国产女同互慰一区二区三区| 亚洲av大全久久| 一道精品视频一区二区三区视频| 97久久久久久精品人妻一区| 很黄很黄的在线上床| 日韩欧美国产另类在线观看| 国产日韩在线成人免费视频| 国产小视频在线播放网站 | 少妇极品熟妇人妻丰满| 欧美日韩特一级大片| 日本av电影av| 日本女同性恋激情视频| 国产精品亚洲av资源| 丝袜人妻丝袜美腿呻吟| 精品尤物女神在线观看| 日韩草草草草草草草草草| 中文字幕日韩一区二区三区本高| 特级做a爱片久久久久久69| 精品乱码久久久久久| 久久综合九色综合欧洲98| 国产日产在线观看系列av| 久久爱精品国产亚洲av| 3751色一区二区三区| 国内一区二区三区在线观看| 日韩美女高潮视频网站| 成人小视频在线播放| 国语自产精品视频在线播放| 久久久999亚洲精品| 午在线亚洲男人午在线| 中文字幕亚洲一区嗯嗯| 最新国产精品av| 黄色8黄色片片大全| 日韩一区二区免费av| 99re日本免费视频| 国产精品99久久黑人免费| 成人小视频在线播放| 国产熟妇精品一区二区三区| 99re日本免费视频| 国产一区二区三区精品公司 | 亚洲精品久久乱码中文字幕| 日日橹狠狠爱欧美| 午在线亚洲男人午在线| 蜜桃成熟的在线观看视频| 人妻熟女av一区| 亚洲天堂电影成人| 91av一区二区三区在线观看| 中文字幕人妻在线视频| 日本 亚洲 久久| 不卡在线一区二区三国产在线视频| 人妻中文字幕高清中出在线视频| 蜜桃久久久久久久久久久久| 亚州国产成人精品久久久| 国产人妻aⅴ一区二区三区| 国产精品久久久人妻午夜| 凹凸国产av熟女白浆| 精品蜜桃一区二区三久久| 人人妻人人爽久久久精品软件 | 日韩视频高清在线观看精品| 婷婷影院久久激情五月天| 亚洲av综合有码| 国产又粗又猛又爽又大的视频| youtube视频字幕中文| 五月天丁香一区二区三区| 国产巨作av在线播放| 成人精品视频99在线观看免费| 91人妻无码成人精品一区二区| 亚洲av在线观看播放| 日本女同性恋激情视频| 国产麻豆精品久久久久久久久| 国产69堂一区二区三区在线观看| 国产丝袜玉足一区二区三区性色| 2020精品极品色视频| 凹凸熟女白浆精品91| 在线成人亚洲中文字幕av| 最新99热这里只有精品| 男人的天堂亚洲2020| 久久久久精品国产亚洲av水蜜| 日韩亚洲欧美中文高清在线| 久久99久久99久久99受| 91麻豆精品传媒国产在线观看| 天天操天天日天天摸天天射| 天堂久久天堂色综合色| 人妻少妇视频在线播放| 91精品一区二区三区| 91xxx免费在线观看| 欧美美熟妇激情一区二区三区在线| 松本一香亚洲av一区| 欧美日韩激情亚洲综合| 山东熟女高潮嗷嗷叫| 国产 日韩 精品 欧美| 亚洲精品黄av人在线观看| 51vv精品视频在线观看| 日韩av有码在线观看| 日本少妇趟水视频| 亚洲五月婷婷丁香综合| a3k9x在线观看| 精品久久久久久久毛片微露脸| 日本午夜高清在线| 成人av在线中文字幕一区| 美日韩av一区二区| 欧美日韩激情亚洲综合| 亚洲国产精品久久久久蜜桃噜噜 | 91区二区三区免费看| 亚洲熟妇aⅴ一区二区| 欧美日韩国产综合色| 日韩熟妇中文字幕| 日本女人性开放视频| 日韩欧美国产另类在线观看| 国产婷婷色av一区二区| 日本不卡三区四区| 56porm在线视频| 欧美精品久久久久久aa| 天天舔天天爱天天做| www中文字幕日本| 久久久亚洲熟妇熟女ⅹxx| 亚洲综合激情av| 一本色道久久综合亚洲av| 精品国产日韩高清毛片| 久久久久久精品免费免费WE| 国产av一区两区三区| 久久精品国产日韩欧美孕妇| 日韩av亚洲激情色图| 日韩av亚洲激情色图| 中文人妻视频免费在线99| 日日爱亚洲一区av| 欧美美熟妇激情一区二区三区在线| 亚洲激情诱惑美女| 国产av天堂亚洲国产av在线| 色婷婷中文字幕一区二区| 精品久久久久久久毛片微露脸| 好好的日在线视频观看| 黑人性高潮免费视频| 欧美一区二区男人天堂| 国产一区二区三区四区99| www中文字幕日本| 玩弄少妇人妻500系列| 美女国产精品美女在线观看 | 欧美一区二区男人天堂| 欧美一区二区三四区操逼| 激情五月综合婷婷欧美| 精品视频一区二区三区蜜桃| 国产又粗又爽又大又黄视频| 99热6这里只有精品国产| 久久精品国产免费观看频道| 人妻在线视频福利| 五月婷婷丰满少妇激情六月| 中文字幕麻豆韩日在线| 欧美美熟妇激情一区二区三区在线| 国产av一区两区三区| 中文字幕乱码一区二区av| av在线网站一区二区三区天堂| 人妻丰满熟妇av无码区ll| 一本久道久久综合综合| 国产精品久久久久内射| 日韩欧美亚洲另类激情一区.| 日本女人性开放视频| 中文日韩欧美第一页| 欧美综合激情另类专区| 日日日夜夜夜精品| 成人伦理片免费在线观看免费观看| 99久在线视频观看| 亚洲日韩不卡视频色酷色| 亚洲美女色www色| 天天摸天天舔天天干天天操天天揉| 国产精品日视频不卡| www中文字幕日本| 一本久道久久综合综合| 亚洲欧美日韩精品制服| 久久999精品久久久久久| 久久久激情伦理在线视频| 久久精品亚洲天堂av| 日韩一区二区综合视频| 日韩啪啪 中文字幕| 久久精品国产免费观看频道| 日本女同性恋激情视频| 欧美大香蕉大香蕉大香蕉| 久久鬼一本到综合88| 欧美日韩久久久久久久久| 久久re视频在线免费观看| 高清欧美精品xxxxx在线看| 日韩专区第17页| 伊人久久亚洲综合社区| 日韩啪啪 中文字幕| 91一区区二区三区在线观看91| 国内女人精品一区二区三区| 人人妻人人爽狠狠干| 久久鬼一本到综合88| 五月婷婷开心之中文字幕| 欧美日韩特一级大片| 日韩欧美中文字幕综合网| 日韩免费视频精品| 五月婷婷激情久久久| 91九色蝌蚪蜜桃臀| 熟妇人妻久久中文字幕番号| 色婷婷中文字幕一区二区| 新久久久久久久久久久免费| 国内女人精品一区二区三区| 久久久亚洲熟妇熟女ⅹxx| 亚洲情色电影网站| 一区二区三区久久久无| 91久久久福利视频| 69久久久久久波多野高潮| 99久在线视频观看| 久久re视频在线免费观看| 91久久久福利视频| 亚洲av成人无网码天堂| 白石茉莉奈一区二区av| 天天舔天天爱天天做| 玩弄少妇人妻500系列| 99亚洲国产成人精品| 97成人在线视频免费播放| 欧美色综合天天久久| 久久久999国产视频| 精品蜜桃一区二区三久久| 一本久久综合亚洲| 亚洲精品日韩在线观看17c| 五月婷婷之综合激情在线| 激情视频网站久久婷婷| 国产97色在线免费看| 91超碰在线一区二区三区| 国产69堂一区二区三区在线观看 | 精品91爱爱中文字幕| 91激情视频在线视频| av午夜久久久久久久| brazzerss色欧美| 五月婷婷激情文学| 亚洲五月天久久久噜噜噜噜| 1024你懂得av在线| 亚洲AV无码国产综合一区二区| 91精品视频一区二区| 亚洲免费在线久久92| 五月天久久伊人欧美| 日韩欧美亚洲三四区| 日韩av有码在线观看| 91久久久久久亚洲精品| 日韩丝袜一区av| 亚洲视频色图天堂| 日韩中文亚洲字幕av| 国产精品三级久久久久精品大全| 欧美成人精品女人久久久| 国产av一区二区三区四区| 老熟妇一区,二区,三区| 国产一区二区三区美女在线观看| 久久精品人妻一区二区三区一| 日韩av区一区二区三| 91区二区三区免费看| 91精品一区二区三区| 亚洲自拍 校园春色| 中国巨乳美女的性与色| 欧美激情综合色综合啪啪| 男人操女人的大逼逼| 国自产久久久久无码春色影视| 亚洲国产三级网站| 97超碰在线免费在线观看| 日本大香蕉国产在线| 久久re视频在线免费观看| 偷拍 亚洲 熟女| 日韩欧美成年一级| 亚洲国产成人女人久久久| 久久99热久久99这里有精品| 美日韩av一区二区| 偷拍 亚洲 熟女| 久久久激情伦理在线视频| 日日爱亚洲一区av| 欧美精品久久久999久久久| 99在线精品免费视频| 亚洲av日日日日| 五月天丁香婷久久爱| 久久精品动漫一区二区三区| 成人黄色免费在线播放| 人妻中文字幕高清中出在线视频| 国产精品久久人人爽人人| 国产亚洲欧美视频一区二区| 久久 偷拍视频 亚洲| 激情五月天福利婷婷| 99精品人妻一区二区三区| 久久国产精品99国产精2021| 人人妻人人爽人人艹| 亚洲欧美日韩wwwc0m666| 欧美日韩精品在线色图| 麻豆91免费视频网站| 欧美一区二区精品系列| 亚洲av毛片av| 人妻一区二区三区久久夜夜嗨 | 中文字幕人妻丝袜二区在线69| 精品高清在线观看免费观看| 亚洲av另类色图在线| 午夜精品免费福利视频一区二区| 天天插天天插天天伊人| 人妻一区二区三区88av| 中文字幕人妻熟女| 臀蜜91精品国产免费观看| 国产69堂一区二区三区在线观看 | 精品人妻午夜在线视频播放| 超级碰碰碰91免费看| 日韩欧美黄色一区二区| 精品高清在线观看免费观看| 久久久久久精品一级片| 亚洲av中字在线| 最新中文字幕 av| 91综合精品久久久久| 深夜激情五月天久久视频| 亚洲精品高清视频在线观看| 久久99久久99精品欧美激情| 久久青草视频免费播放| 麻豆91免费视频网站| 欧美精产国品一二三类产品| 臀蜜91精品国产免费观看| 美日韩av一区二区| 精品国产一区二区三区av天堂| 日韩综合一区二区三区| 热新久久99免费视频视频| 99蜜桃人妻免费在线看| 性做久久久久久久久浪潮| 五月婷婷六月丁香动漫| 久久久夜色精品亚洲av图| 日本午夜高清在线| 久久99视频完整版| 五月婷婷丰满少妇激情六月| 综合久久 中文字幕| 午夜精品久久久久久不卡欧美一级| 人人精品,人人妻| 91婷婷国产精品久久久久| 熟妇人妻久久中文字幕番号| 久久精品熟妇熟妇丰满人妻5o| 成人午夜精品久久av| youtube视频字幕中文| 日韩亚洲中文字幕视频| 国产一区二区三区在线观看网站| 少妇人妻中文字幕一二三区| 亚洲ⅴa久久久噜噜噜久久狠狠| 超碰国产在线观看91| 国产精品高潮呻吟久久av无限| 亚洲欧美日韩精品制服| 色狠久久av北条麻纪| 中文字幕人妻国产91| 中文字幕中文有码在线精品| 久久久久久亚洲综合影院| 亚洲中文字幕在线的| 亚洲午夜伦理aaa| 国产又粗又猛又爽又黄的视频网站| 亚洲国产av不卡婷婷| 国产美女精品传媒在线观看| 国产欧美电影一区二区三区| 国产综合91天堂亚洲国产| 日韩av成人一区二区三区在线看 | 亚洲中文字幕乱码一区二区| 日本精品国产免费久久久| 中文字幕91大神| 精品国产一区二区三区av天堂| 日本亚洲国产色图| 亚洲av在线观看播放| 日本熟妇色97一本在线观看| 久久综合精品乱码中文| 国产欧美日韩两性在线观看| 97久久久久久精品人妻一区| 亚洲丝袜在线欧美| 欧美久久久久人妻尻禄破| 热久久久久这里有精品| 精品人妻少妇系列女友系列| 五月婷婷激情久久久| 丁香婷婷激情啪啪综合五月天| 日韩欧美中文字幕少妇| 国产一区日本一区欧美一区| 国产一二三不卡视频| 精品91爱爱中文字幕| 欧美精欧美乱码一二三区| 欧美国产精品久久久久久免费| 久久天天躁狠狠躁夜夜躁免费观看| 国产精产国品一二三产区视频| 人妻中文字幕视频| 九九九九九高清一本无码| 天堂网免费在线电影| 欧美日韩国产综合色| 久久综合九色综合欧洲98| 国产精品性色在线播放| 欧美一区二区男人天堂| 人妻中文字幕视频| 91国产精品视频在线| 久久精品国产96精品| 亚洲欧美日韩清纯唯美| 丁香六月激情啪啪啪啪啪啪啪| 久久久久999久久久久| 99成人免费视频观看| 久久精品国产96精品| 亚洲av在线观看播放| 日韩免费视频精品| evanotty精品二区| 国产一区二区三区在线h| 不卡的高清国产av| 9999久久久久久久久| 中文字幕日本激情| 欧美综合激情另类专区| 久久久亚洲视频播放| 在线播放日韩av不卡| 亚洲中文字幕久久久av| 国产91一区二区三区在线| 蜜桃臀久久久蜜桃臀| 中文字幕人妻丝袜成熟久久| 老熟女老91妇女老熟女| 精品久久久久久一区二| 亚洲中文字幕在线的| 国产精品高潮呻吟久久av无限| 婷婷激情综合一区二区| 93久久精品日日躁夜夜躁欧美 | 日韩免费视频精品| 日本久久免费在线观看| 国产日产在线观看系列av| 91行情视频在线看高清| 日本熟妇久久久久久| 久久综合久久综合亚洲| 日韩欧美成年一级| 蜜桃精品一区二区在线看| 亚久久久久久久久久久久久久| 中文字幕欧美精品日韩有码| 手机在线精品国产| 91国产手机在线观看| 国产av一二区三区| 青青青青青青青青草视频在线观看| 日韩中文字幕人妻在线视频| 中文字幕av一区二区人妻| 亚洲视频色图天堂| 欧美性色aⅴ欧美综合色| 国产巨作av在线播放| 999国内精品视频在线观看| 人妻视频一区二区三区免费| 国产精品久久久久久久久密臀| 国产又粗又白又嫩又爽| 色综合久久久久久久综合| 精品久久久久久久久久久换人妻| 又色又爽又黄久久98| 欧美日韩私拍福利视频| 白石茉莉奈一区二区av| 2xpxp在线视频| 蜜桃成熟的在线观看视频| 久久久999国产视频| 午夜伊人狠狠av| 91色区在线观看国产免费| 熟探花啪啪第十场av| 国产精品稀缺资源av在线| 久久精品久久久久久久久精品| av的天堂男人的天堂| 日本不卡三区四区| 国产综合精品久久99之一| 亚洲少妇插b色图| 欧美丰满熟妇乱xxxx| 日韩人妻字幕在线| 久久国产劲爆^v内射| 8日韩一级一片内射视9一| 18久久久久久久久久久久久| 国产美女一区二区三区四区免费| 91激情视频在线视频| 成人午夜精品久久av| 国产成人av在线无限观看| 97日韩在线免费视频网站| 久久久激情伦理在线视频| 亚洲欧美日韩wwwc0m666| 国产偷拍自拍久久久| 99热这里只有精品16| 日韩欧美亚洲精品综合| 亚洲一级黄免费视频| 九九视频精品在线免费观看| 日本大香蕉永久网| 99久草精品视频在线| 久久亚洲福利视频免费| 中文字幕人妻熟女av| 日韩成人一区电影| 久久精品亚洲天堂av| 中文日韩欧美第一页| 又色又爽又黄久久98| 俺去啦俺色也最新久久| 色999日韩精品| 久久久久999久久久久| 99精品国产999| 青青青在线观看国产| 大陆精品一区二区三区久久| 久久久精品亚洲一区二区三区| 午夜欧美久久久久久久久| 美女国产精品美女在线观看| 激情视频网站久久婷婷| 亚洲欧美日韩国产都市激情| 日韩欧美亚洲三四区| 亚洲第一成人在线观看av| www,夜色,com| 久久精品国产99久久久蜜桃| 日本韩国国产一级片| 国家卫健委要求各地设黄码医院| 日韩一区视频播放| 丰满少妇免费做爰大片人| 黑人操中国女人的逼| 中文字幕日产在线视频| 久久久久精品国产亚洲av水蜜| 国语自产精品视频在线播放| 一区二区三区久久久av| 91老司机在线视频| 日本av电影av| 熟女义母乱码中文字幕| 精品高清在线观看免费观看| 国产精品久久久久久66| 国产亚洲欧洲一区二区在线| 97超碰在线公开在线看免费| 99在线观看视频在线播放| 国产av一二区三区| 日韩av区一区二区三| 日韩亚洲在线成人| 久久亚洲在线精品视频| 天天操天天射天天干b| 日韩av毛片观看| 大吊视频一区二区三区四区| 91入口在线观看天天| 凹凸国产av熟女白浆| 麻豆网站在线免费观看| 麻豆成人免费视频一区二区| 欧美一区激情大胆在线播放| 蜜桃av一区二区视频| 人妻熟女中文字幕在线观看| 最新 国产 精品 精品 视频| 日本漂亮人妻熟妇| 乱码午夜久久久99| 日韩一区二区三区成人| 99热6这里只有精品国产 | 欧美人妻有码中文字幕| 93久久精品日日躁夜夜躁欧美| 91激情视频在线视频| 熟女人妻中文字幕欧美日韩| 天天摸天天高潮天天爽| 亚洲日韩不卡视频色酷色| 全亚洲最大资源网| 久久久久久熟妇吹潮av观看| 欧美精产国品一二三类产品| 天天插天天透天天婷婷| 亚洲丝袜在线欧美| 熟女阿高潮合集91| 玩弄少妇人妻500系列| 日韩美av一区二区| 亚洲熟妇熟女久久精品综合| 日本熟妇色97一本在线观看| 久久精品一区二区麻豆| 亚洲制服人妻另类小说| 亚洲欧美日韩国产成人综合| 亚洲少妇插b色图| 91香蕉久久久久久| 日韩专区第17页| 精品少妇人妻一区二区三区四区| 99亚洲国产成人精品| 国产 欧美日韩在线视频| 久久艹中文字幕丝袜| 精品999高清视频| 一级av黄色大片| 亚洲av另类色图在线| 久久久亚洲熟妇熟女内射一区| 岛国福利视频在线观看| 日韩熟妇人妻中文字幕一区| 大香蕉大香蕉大香蕉最新| 999热国内精品在线免费视频| 久久精品免费看网站| 久久99热在线观看| 激情五月天俺也去淫淫| 成人黄色免费在线播放| 亚洲婷婷在线视频观看| 臀蜜91精品国产免费观看| 久久99爱精品999| 亚洲中文字幕在线观看国产推理片| 亚洲欧美日韩国产成人综合| 深夜激情五月天久久视频| 久久久久999久久久久| 中文字幕一区中文字幕| 日韩三级电影大全中文字幕| 精品综合久久久久久久91精品| 五十路丰满大屁股老熟女 | 国产麻豆精品久久久久久久久| a阿v视频在线观看| 日日橹狠狠爱欧美| 亚洲图库另类图片日韩| 欧美久久久久久久久久久久久 | 性高潮久久久久久久久久| 18久久久久久久久久久久久| 日韩综合一区二区三区| 国产不卡最新在线视频| 国产麻豆精品成人免费观看| 国产精品久久久久久人妻免费| 麻豆资源在线不卡观看| 国产日韩av在线免费观看| 3751色一区二区三区| 日韩一区二区三区蜜桃av| 日韩精品在线免费观看自拍视频| 国产又粗又猛又爽又黄的视频网站| 绝色少妇高潮3在线观看| 很黄很黄的在线上床| 亚洲综合伦理av| 国产精品中文字幕免费| 亚洲精选在线视频| 久久久久久国产精品一区二区| 日本av电影av| 欧美美熟妇激情一区二区三区在线 | av中文字幕在线观看播放| 亚洲视频色图天堂| 亚洲免费在线久久92| 风流老熟女一区二区三区av | 天堂影院在线免费观看| 亚洲av毛片av| 国产999精品999| 国产一二三不卡视频| 日韩三级精品视频| 欧美日韩一区二区三区黑人| 日本不卡三区四区| 91国产人成在线观看| 午夜精品久久久久久不卡欧美一级| 亚洲午夜青青草久久久久| www.中文字幕丝袜| 午夜香蕉一区二区三区| 欧美日韩大片在线观看视频网站 | 色视频免费在线观看高清| 亚洲美女色www色| 亚洲一区二区尻逼| 精品综合久久久久久久91精品| 日韩综合一区二区三区| 高清露脸爆极品白富美av| 亚洲国产三级网站| 日本一本二本三本不卡区| 亚洲激情av电影| 国产综合91天堂亚洲国产| 午夜精品一区二区三区电影..| 亚洲欧美日韩国产成人综合| 玩弄放荡人妻少妇精品| 日韩不卡一区二区在线观看| 成人伦理片免费在线观看免费观看| 成人伦理片免费在线观看免费观看| 亚洲成人av熟妇人妻| 免费一区二区三区视频| 中文字幕欧美精品日韩有码| 日韩不卡一区高清视频| 人人澡人人澡人人妻| 久久亚洲精品人成综合网| 免费一区二区三区视频| 国产精品中文字幕免费| 日韩欧美国产一卡一区| 两个97年失恋疗伤在线观看| 91婷婷国产精品久久久久| 天堂网免费在线电影| 欧美日韩一级在线视频| 久久99在线观看视频| 91一区区二区三区在线观看91| 国产精品三级久久久久精品大全 | 色婷婷综合久久久久精品中文| 人妻熟妇丰满不伦一区二区三区| 国自产久久久久无码春色影视| 国产精品6久久久久久久| 99re日本免费视频| 中老熟妇一区二区| av中文字幕人妻丝袜在线| 99久久精品视频免费| 国产精品久久九九视频| 色婷婷av一区二区三区四川 | 日韩啪啪 中文字幕| 午夜精品一区二区三区91| avtt天堂网久久精品| 日韩精品嘿咻视频| 日韩中文少妇字幕| av影院永久免费在线看| 日韩亚洲欧美在线com| 欧美精品在线小视频| 久久久999国产视频| 深夜激情五月天久久视频| 日本熟妇高清在线观看| 黄色av网站在线观看免费 | 国产午夜精品久久精| 色五五月五月开亚洲婷婷| 国产又粗又猛又爽又视频| 天天摸天天舔天天干天天操天天揉| 日韩视频高清在线观看精品| 久久久9视频免费观看| 99热这里只有精品色| 伊人成色综合视频| 亚洲熟妇欲色一区一区三区| 全亚洲最大资源网| 不卡在线一区二区三国产在线视频 | 久久精品美女性感国产综合av| 麻豆成人免费视频一区二区| 亚洲少妇人妻系列| 中文字幕人妻乱码在线| 久久精品久久久久久久久精品| 一本久道久久综合综合| 少妇人妻一级视频观看| 91 porny九色| 亚洲日本精品久久久久中文| 一区二区三区欧美日韩欧美| 天堂网免费在线电影| 日韩精品视频网站免费看| 亚洲综合色网自拍| 夏天香蕉如何保存能放更久| 欧美性色aⅴ欧美综合色| 久久久999久久国产| 99 re热久久免费视频| 免费公开国产五十路视频| 欲色av蜜臀av性色av三级| 日韩综合一区二区三区| 91夜色私人影院在线观看| 国产高清蜜臀久久99| 伊人久久首页精品| 精品国产一区二区三区av天堂 | 久久久亚洲熟妇一区二区三区| 亚洲一区二区日韩电影| 天天摸天天高潮天天爽| 欧美日韩特一级大片 | 婷婷影院久久激情五月天| 成人日韩视频中文字幕| 99这里有精品在线观看视频| 人妻人人澡人人爽夜夜爽| 熟妇人妻久久中文字幕番号| 中文字幕在线日韩人妻| 在线视频蜜桃视频| 午夜婷婷综合在线| 国内精品国产三级国产a久久| 国产又粗又白又嫩又爽| 日韩精品在线免费观看自拍视频| 国产精品年轻夫妻激情啪啪| 国产伦理一区二区久久久久久| 五月婷婷激情久久久| 婷婷激情网五月天| 亚洲高清精品人妻自拍| 91夜色私人影院在线观看| 91区二区三区免费看| 99久在线视频观看| 亚洲精品国产呦系列| 久久久99视频在线免费观看| 亚洲热青春视频在线| 亚洲国产av不卡婷婷| 日本久久激情视频| 99re日本免费视频| 欧美日韩一级在线视频 | 97久久碰国产精品夜| 亚洲欧美日韩国产都市激情| 亚洲熟妇aⅴ一区二区| 秋霞福利视频在线观看| 91色区在线观看国产免费| 久久精品影院在线观看视频| 免费一区二区三区视频| 欧美日韩人妻最新入口| 欧美日韩私拍福利视频| 亚洲视频色图天堂| 欧美亚日韩一区二区三区| 一区二区三区久久久无| 亚洲av在线观看播放| 国产午夜精品在线免费观看| 一区二区三区久久久无| 亚洲中文字幕久久久av| 99精品国产高清久久久久久| 丰满少妇高潮久久久久久| 精品国产av色哟哟| 国产综合精品久久99之一| 日韩亚洲中文字幕视频| av一区二区在线观看完| 国产精选一区二区三区91| 日本大香蕉国产在线| 日韩在线一二区不卡| 天堂久久天堂色综合色| 两个97年失恋疗伤在线观看| 久久精品国产亚洲精品166m| 99热都是只有精品| 91超碰精品日日躁夜夜躁欧美| 国内女人精品一区二区三区| 中文字幕人妻丝袜成熟久久| 可以直接看的黄色av网站| 99热这里只有精品16| 99精品福利一区二区| 国产精品 国内视频| 日韩免费视频精品| 欧美人妻有码中文字幕| 国产一区二区美女视频| 亚洲天堂最新版www| 国产亚洲欧洲一区二区在线| 中文字幕一区三区二区国产| 欧美在线视频一区二区三区| 韩国三级伦理在线视频| 欧美成人精品女人久久久| 国产五月天在线视频| 色哟哟 日韩精品| 在线观看中文字幕码2020| 欧美日韩亚洲精品视频| 午夜精品男人天堂av| 国产女人久久久久久| 国产成人精品在线久久| 久久爱精品国产亚洲av| 日韩熟妇人妻中文字幕一区| 91色porny在线| 午夜精品一区二区三区四区| 97久久碰国产精品夜| 日韩精品有码自拍| 午夜爱看福利视频| 久久精品国产免费观看频道| 亚洲自拍偷拍动图| 色片在线观看国产| 熟女义母乱码中文字幕| 亚洲三级天堂在线| av午夜久久久久久久| 99久草精品视频在线| 色9933av精品一区| 蜜臀久久精品99国产| 一本色道久久综合狠狠躁篇怎么玩 | 中文字幕一区二区人妻5566| 亚洲少妇人妻系列| 日本女同性恋激情视频| 蜜桃久久久久久久91| 韩国三级伦理在线视频| 欧美日韩图区一区二区三区| 欧美成人精品一区二区视频| 加勒比图片区不卡97| 人妻丰满精品熟女| 亚洲图库另类图片日韩| 日韩精品视频网站免费看| 国产美女一区二区三区四区免费 | 欧美日韩极品妻在线观看| 国产精选一区二区三区91| 亚洲男人天堂加勒比| 日日夜夜av资源| 国产一区二区三区四区观看| 99热国产一区二区三区| 91精品国产久久久久久| 91超碰精品日日躁夜夜躁欧美 | 日日爱亚洲一区av| 不卡一二三区在线视频| 日韩三级视频大全| 日韩一区二区免费av| 久久久久久久人妻av| 中文字幕超碰在线播放| 蜜桃久久久久久久久久久久| 中文字幕乱码一区二区av| 五月婷婷大香蕉日韩| 成人国内精品视频在线观看日韩| 欧美国产精品久久久久久免费| 久久视频精品在线视频| 在线视频人妻中文字幕| 日韩一区二区免费av| 久久久99视频在线免费观看| 久久久夜色精品亚洲av图| 五月天中文字幕在线婷婷| 99久久99久久久精品| 自拍偷拍另类色图| 亚洲国产精品久久久久蜜桃噜噜 | 国产精品成人久久久久久| 人妻少妇视频在线播放| 国产成人综合精品久久| av一区二区在线观看完| 久久久91人妻精品一区二区三区| 奇米成人av电影| 亚洲天堂国产免费| 日韩欧美亚洲成人网| 中文字幕日韩一区二区不卡| 国产婷婷色av一区二区| 成人福利在线播放免费| 2014天天操一操天天干一干| 91大神 在线播放| av一本久久久久久| 91久久人澡人人添人人爽网站| 精品国产一区二区三区av天堂| 色99色.com| 日韩亚洲在线成人| 国产69堂一区二区三区在线观看 | 91精品一区二区三区91人妻| 亚洲热青春视频在线| 日韩欧美亚洲另类激情一区.| 久久99精品色婷婷| 天堂中文在线成人| 色婷婷综合久久久久精品中文 |