
標(biāo)準(zhǔn)差(Standard Deviation) ,也稱均方差(mean squareerror),是各數(shù)據(jù)偏離平均數(shù)的距離的平均數(shù),它是離均差平方和平均后的方根,用σ表示。標(biāo)準(zhǔn)差是方差的算術(shù)平方根。標(biāo)準(zhǔn)差能反映一個(gè)數(shù)據(jù)集的離散程度。平均數(shù)相同的,標(biāo)準(zhǔn)差未必相同。
簡(jiǎn)單來說,標(biāo)準(zhǔn)差是一組數(shù)據(jù)平均值分散程度的一種度量。一個(gè)較大的標(biāo)準(zhǔn)差,代表大部分?jǐn)?shù)值和其平均值之間差異較大;一個(gè)較小的標(biāo)準(zhǔn)差,代表這些數(shù)值較接近平均值。
例如,兩組數(shù)的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7,但第二個(gè)集合具有較小的標(biāo)準(zhǔn)差。
標(biāo)準(zhǔn)差可以當(dāng)作不確定性的一種測(cè)量。例如在物理科學(xué)中,做重復(fù)性測(cè)量時(shí),測(cè)量數(shù)值集合的標(biāo)準(zhǔn)差代表這些測(cè)量的精確度。當(dāng)要決定測(cè)量值是否符合預(yù)測(cè)值,測(cè)量值的標(biāo)準(zhǔn)差占有決定性重要角色:如果測(cè)量平均值與預(yù)測(cè)值相差太遠(yuǎn)(同時(shí)與標(biāo)準(zhǔn)差數(shù)值做比較),則認(rèn)為測(cè)量值與預(yù)測(cè)值互相矛盾。這很容易理解,因?yàn)槿绻麥y(cè)量值都落在一定數(shù)值范圍之外,可以合理推論預(yù)測(cè)值是否正確。
標(biāo)準(zhǔn)差應(yīng)用于投資上,可作為量度回報(bào)穩(wěn)定性的指標(biāo)。標(biāo)準(zhǔn)差數(shù)值越大,代表回報(bào)遠(yuǎn)離過去平均數(shù)值,回報(bào)較不穩(wěn)定故風(fēng)險(xiǎn)越高。相反,標(biāo)準(zhǔn)差數(shù)值越細(xì),代表回報(bào)較為穩(wěn)定,風(fēng)險(xiǎn)亦較小。
例如,A、B兩組各有6位學(xué)生參加同一次語文測(cè)驗(yàn),A組的分?jǐn)?shù)為95、85、75、65、55、4 5,B組的分?jǐn)?shù)為73、72、71、69、68、67。這兩組的平均數(shù)都是70,但A組的標(biāo)準(zhǔn)差為17.07分,B組的標(biāo)準(zhǔn)差為2.37分(此數(shù)據(jù)時(shí)在R統(tǒng)計(jì)軟件中運(yùn)行獲得),說明A組學(xué)生之間的差距要比B組學(xué)生之間的差距大得多。
如是總體,標(biāo)準(zhǔn)差公式根號(hào)內(nèi)除以n
如是樣本,標(biāo)準(zhǔn)差公式根號(hào)內(nèi)除以(n-1)
因?yàn)槲覀兇罅拷佑|的是樣本,所以普遍使用根號(hào)內(nèi)除以(n-1)
在圖像處理中,一般用下式表示:
其中,I、K為兩幅圖像,m、n為圖像的寬和高。
有時(shí),用也下式表示:
公式意義
所有數(shù)減去其平均值的平方和,所得結(jié)果除以該組數(shù)之個(gè)數(shù)(或個(gè)數(shù)減一),再把所得值開根號(hào),所得之?dāng)?shù)就是這組數(shù)據(jù)的標(biāo)準(zhǔn)差。
標(biāo)準(zhǔn)差越高,表示實(shí)驗(yàn)數(shù)據(jù)越離散,也就是說越不精確
反之,標(biāo)準(zhǔn)差越低,代表實(shí)驗(yàn)的數(shù)據(jù)越精確
愛華網(wǎng)


